932 resultados para Regular Linear System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To investigate erosive tooth wear and related variables among adolescents and adults in Israel, utilizing the new basic erosive wear examination (BEWE) scoring system, in an attempt to contribute to the ongoing review, evaluation, and further development of an international standardized index. MATERIAL AND METHODS A cross-sectional, descriptive, and analytic survey was conducted among 500 subjects of five age groups. Dental erosion was measured according to the new BEWE scoring system. Independent variables included gender, age, origin, education, employment status, and diet. A backward stepwise linear regression model was applied to identify significantly associated variables. RESULTS Fifty percent of the survey subjects demonstrated erosive tooth wear; among them, 10 % had distinct erosion of over 50 % of the dental surface. Total BEWE score differences by age groups were statistically significant; as the age increased, the mean total BEWE scores increased (p < 0.001). The association between acidic foods and erosion was evident among the younger population (p = 0.038). In a multiple regression model, age (p < 0.001) and diet (p = 0.044) achieved statistical significance as variables associated with dental erosive wear. CONCLUSIONS Our study is one of the first to use the BEWE scoring system in an epidemiological survey among adolescents and adults. It was found that the BEWE index is straightforward, easy to conduct, and comfortably accepted by the examinees. CLINICAL RELEVANCE The present findings, together with further international research, should contribute toward continued evaluation of the BEWE system as an international standard and thereby, toward more optimal understanding, evidence-based treatment, and prevention of dental erosive wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.