951 resultados para Reconstruction tridimensionnelle
Resumo:
Holocene climate variability is investigated in the North Pacific and North Atlantic realms, using alkenone-derived sea-surface temperature (SST) records as well as a millennial scale simulation with a coupled atmosphere-ocean general circulation model (AOGCM). The alkenone SST data indicate a temperature increase over almost the entire North Pacific from 7 cal kyr BP to the present. A dipole pattern with a continuous cooling in the northeastern Atlantic and a warming in the eastern Mediterranean Sea and the northern Red Sea is detected in the North Atlantic realm. Similarly, SST variations are opposite in sign between the northeastern Pacific and the northeastern Atlantic. A 2300 year long AOGCM climate simulation reveals a similar SST seesaw between the northeastern Pacific and the northeastern Atlantic on centennial time scales. Our analysis of the alkenone SST data and the model results suggests fundamental inter-oceanic teleconnections during the Holocene.
Resumo:
Changes of sea surface temperature (SST) in the subarctic NE Pacific over the last 16,000 calendar years before present (16 kyr BP) have been inferred from the study of C37 alkenone unsaturation in a sediment core from the western Canadian continental slope. Between 16.0 and 11.0 kyr, three distinct cold phases (6-7°C) interrupt two warmer periods (9-10°C). Within the 2sigma range of the radiocarbon based time control, the observed SST oscillations correspond to the Oldest Dryas, the Bolling, the Older Dryas, the Allered, and the Younger Dryas periods in the GISP2 d180 record. These results represent the first high resolution marine paleotemperature estimates off the northern West coast of North America and imply that the climate of this region may be very strongly coupled to that of the North Atlantic. Given the fast rates of SST change (1°C/40-80 yr), such coupling must be controlled by atmospheric transmission of the climate signal.
Resumo:
Relative to the present day, meridional temperature gradients in the Early Eocene age (~56-53 Myr ago) were unusually low, with slightly warmer equatorial regions (Pearson et al., 2007, doi:10.1130/G23175A.1 ) but with much warmer subtropical Arctic (Sluijs et al., 2008, doi:10.1029/2007PA001495) and mid-latitude (Sluijs et al., 2007, doi:10.1038/nature06400) climates. By the end of the Eocene epoch (~34 Myr ago), the first major Antarctic ice sheets had appeared (Zachos et al., 1992, doi:10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2; Barker et al., 2007, doi:10.1016/j.dsr2.2007.07.027), suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX86 record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude ~65° S). We show that southwest Pacific SSTs rose above present-day tropical values (to ~34° C) during the Early Eocene age (~53 Myr ago) and had gradually decreased to about 21° C by the early Late Eocene age (~36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration Zachos et al. (2008, doi:10.1038/nature06588), additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.
Resumo:
Assessment of changes in surface ocean conditions, in particular, sea-surface temperature (SST), is essential to understand long-term changes in climate especially in regions where continental climate is strongly influenced by oceanographic processes. To evaluate changes in SST in the northeast Pacific, we have analyzed long-chain alkenones of prymnesiophyte origin at 38 depths in a piston and associated trigger core collected beneath the contemporary core of the California Current System at 42°N, ~270 km off the coast of Oregon/California. The samples span 30,000 years of deposition at this location. Unsaturation patterns (UK'37) in the alkenone series display a statistically significant difference (p <<0.001) between interglacial (0.44 ± 0.02, n = 11) and glacial (0.29 ± 0.04, n = 20) intervals of the cores. Detailed examination of other compositional features of the C37, C38, C39 alkenone series and a related C36 alkenoate series measured downcore suggests the published UK'37 - temperature calibration (UK'37 = 0.034 * T + 0.039 ) , defined for cultures of a strain of Emiliania huxleyi isolated from the subarctic Pacific, provides best estimates of winter SST at our study site. This inference is purely statistical and does not imply, however, that the phytoplankton source of these biomarkers is most productive in winter or at the ocean surface. The temperature record for UK'37 implies (1) an ~4°C shift occurred in winter SST from ~7.5 ± 1.1°C at the last glacial maximum to ~11.7 ± 0.7°C in the present interglacial period, and (2) this warming trend was confined to the time frame 14-10 Ka within the glacial to interglacial transition period. These conclusions are corroborated entirely by results from an independent SST transformation of radiolarian species assemblage data obtained from the same core materials.
Resumo:
This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.
Resumo:
DATED-1 comprises a compilation of dates related to the build-up and retreat of the Eurasian (British-Irish, Scandinavian, Svalbard-Barents-Kara Seas) Ice Sheets, and time-slice maps of the Eurasian Ice sheet margins. Dates are sourced from the published literature. Ice margins are based on published geological and chronological data and include uncertainty bounds (maximum, minimum) as well as what we consider to be the most-credible (mc) based on the available evidence. DATED-1 has a census date of 1 January 2013. Full description and caveats for use are given in: Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I. (2015) The last Eurasian Ice Sheets - a chronological database and time-slice reconstruction, DATED-1.
Resumo:
Alkenone unsaturation ratios and planktonic delta18O records from sediment cores of the Alboran, Ionian and Levantine basins in the Mediterranean Sea show pronounced variations in paleo-temperatures and -salinities of surface waters over the last 16,000 years. Average sea surface temperatures (SSTs) are low during the last glacial (averages prior to 13,000 years: 11-15°C), vary rapidly at the beginning of the Holocene, and increase to 17-18°C at all sites during S1 formation (dated between 9500 and 6600 calendar years). The modern temperature gradient (2-3°C) between the Mediterranean sub-basins is maintained during formation of sapropel S1 in the Eastern Mediterranean Sea. After S1, SSTs have remained uniform in the Alboran Sea at 18°C and have fluctuated around 20°C in the Ionian and Levantine Basin sites. The delta18O of planktonic foraminifer calcite decreases by 2 per mil from the late glacial to S1 sediments in the Ionian Basin and by 2.8 per mil in the Levantine Basin. In the Alboran Sea, the decrease is 1.7 per mil. Of the 2.8 per mil decrease in the Levantine Basin, the effect of global ice volume accounts for a maximum of 1.05 per mil and the temperature increase explains only a maximum of 1.3 per mil. The remainder is attributed to salinity changes. We use the temperature and salinity estimates to calculate seawater density changes. They indicate that a reversal of water mass circulation is not a likely explanation for increased carbon burial during S1 time. Instead, it appears that intermediate and deep water formation may have shifted to the Ionian Sea approximately 2000 years before onset of S1 deposition, because surface waters were as cold, but saltier than surface water in the Levantine Basin during the Younger Dryas. Sapropel S1 began to form at the same time, when a significant density decrease also occurred in the Ionian Sea.
Resumo:
Water exchange between the Black Sea and the Mediterranean Sea has been a major focus of the paleohydrography of the eastern Mediterranean. Glacial melt water released from the Black Sea is a potential factor in the formation of sapropel S1, an organic-rich sediment layer that accumulated during the Early Holocene. A high-resolution study done on sediments from the Marmara Sea, the gateway between the Mediterranean and the Black Sea, sheds light on the Holocene exchange processes. Past sea surface temperature and sea surface salinity (SSS) were derived from stable oxygen isotope ratios (delta18O) of foraminiferal calcite and alkenone unsaturation ratios (Uk'37). Heavy delta18O values and high SSS in the Marmara Sea suggest absence of low salinity water from the Black Sea during S1. The comparison with data from the Levantine Basin and southern Aegean Sea outlines gradients of freshening in the eastern Mediterranean Sea, whereby the major sources of freshwater were closer to the Levantine Basin. It is thus concluded that the Black Sea was not a major freshwater source contributing to formation of S1. Given the absence of a low salinity layer, the deposition of organic-rich sediments corresponding to S1 in the Marmara Sea is likely the result of the global transgression and the concomitant re-organization of biogeochemical cycles, leading to enhanced productivity as shown by Globigerina bulloides.
Resumo:
Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer insolation (Kutzbach and Liu, 1997, doi:10.1126/science.278.5337.440; Partridge et al., 1997, doi:10.1016/S0277-3791(97)00005-X). Conversely, short-term precipitation changes in the northern African tropics have been linked to North Atlantic sea surface temperature anomalies, affecting the northward extension of the Intertropical Convergence Zone and its associated rainbelt (Hastenrath, 1990, doi:10.1002/joc.3370100504, Street-Perrott and Perrott, 1990, doi:10.1038/343607a0). Our knowledge of large-scale hydrological changes in equatorial Africa and their forcing factors is, however, limited (Gasse, 2000, doi:10.1016/S0277-3791(99)00061-X). Here we analyse the isotopic composition of terrigenous plant lipids, extracted from a marine sediment core close to the Congo River mouth, in order to reconstruct past central African rainfall variations and compare this record to sea surface temperature changes in the South Atlantic Ocean. We find that central African precipitation during the past 20,000 years was mainly controlled by the difference in sea surface temperatures between the tropics and subtropics of the South Atlantic Ocean, whereas we find no evidence that changes in the position of the Intertropical Convergence Zone had a significant influence on the overall moisture availability in central Africa. We conclude that changes in ocean circulation, and hence sea surface temperature patterns, were important in modulating atmospheric moisture transport onto the central African continent.