991 resultados para Radioactive fallout.
Resumo:
In a post-imperial burst to define the boundaries of its sovereignty, Britannia is ruling the waves again, albeit in the form of air time devoted to the fallout from its referendum vote rather than in a show of force from its flotilla. It was with disbelief and sorrow that the UK’s partners in Europe and the rest of the world woke up to the news of the British Leave vote in the referendum on its EU membership. The prospect of a Brexit has sent shock waves throughout the international financial and political system and is set to occupy media debate for months to come.
Resumo:
Last month, a majority of British voters decided that the UK should leave the European Union (EU). In the wake of the Brexit result, anti-EU politicians in a host of member states began to float the idea of putting the same ‘in-out’ option to electorates in their own countries. As the economic and political fallout of the UK’s choice to withdraw from the EU continues to unfold, an acute sense of uncertainty gathers steam and ripples not just through the remaining member states but also their EU-hopeful neighbours in the Balkans. What will the departure of the UK from the EU mean for the Balkan enlargement process?
Resumo:
As the UK’s brutal political fallout of Brexit continues to astound the world, leaders in the other member states are wrestling with the EU’s new reality. They deemed it too early to draw conclusions at the June European Council. Instead, the heads of state and government declared a period of political reflection on the future of an EU with 27 member states. They will meet again informally on September 16th in Bratislava. The question is: What impetus can they give to reforms to remain united and deal with the challenges of the 21st century?
Resumo:
The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.
Geological map of Potter Peninsula (King George Island, South Shetland Islands, Antarctic Peninsula)
Resumo:
We present here a new geological map of Potter Peninsula (King George Island, South Shetland Islands). Like on adjacent Barton Peninsula, the morphology on Potter Peninsula is predominantly characterized by a glacial landscape with abrasion platforms offshore, in parts steep cliffs along the coast, and a rather smooth, hilly countryside in the interior. Potter Peninsula forms part of the downthrown Warszawa Block. The volcanic sequence cropping out here belongs to the King George Island Supergroup, with an observed local minimum thickness of approx. 90 m (Kraus 2005). The most prominent morphological feature is Three Brothers Hill (196 m), a well known andesitic plug showing conspicuous columnar jointing. It marks the final stage of activity of a Paleogene volcano, whose eruption products (lava flows and pyroclastic rocks), together with hypabyssal intrusions related to the volcanism, make up most of the lithology observed on Potter Peninsula (Kraus 2005). The Three Brothers Hill volcanic complex is eroded down to its deepest levels. Thus, the stratigraphically deepest units from the initial phase of volcanic activity are cropping out in some parts (Kraus & del Valle, in Wienke et al. 2008). The lithology on Potter Peninsula comprises lava flows (~50%), pyroclastic rocks (ash-fallout, pyroclastic flow deposits, volcanic breccia and agglomerates, ~30%) and hypabyssal intrusions (dykes, sills and small subvolcanic intrusive bodies, ~20%). 40Ar/39Ar datings carried out on magmatic dykes from Potter Peninsula indicate a short, but intense intrusive event during the Lutetian (Kraus et al. 2007).
Resumo:
More than 50 discrete volcanic ash layers were recovered at the five drill sites of the Blake Nose depth transect (Leg 171B, western central Atlantic). The majority of these ash layers are intercalated with Eocene hemipelagic sediments with a pronounced frequency maximum in the upper Eocene. Several ash layers appear to be deposited from volcanic fallout with little or no indication of secondary remobilization. They provide excellent stratigraphic markers for a correlation of the Leg 171B drill sites. Other ash layers were probably redeposited from volcaniclastic-rich turbidity currents, but they still represent geologically instantaneous events that can be used in stratigraphic correlation between adjacent drill holes. Additional nonvolcanic marker beds, like the suspect late Eocene impact event layer, were included in our hole-to-hole correlations. Stratigraphic and downcore positions of marker beds were compiled and plotted against existing composite depth records that were constructed to guide high-resolution sampling. Comparison of our correlation with the spliced composite sections of each drill site reveals several minor and some major discrepancies. These may result from drilling distortion or missing sections, from the lack of unambiguous criteria for the synchronism of ash layers, or from the systematic exclusion of marker-bed data in the construction of the spliced record. Integration of both correlation approaches will help eliminate most of the observed discrepancies.
Resumo:
A 10Be/9Be-based chronostratigraphy has been determined for ODP 181, Site 1121 sediment core, recovered from the foot of the Campbell Plateau, Southwest Pacific Ocean. This core was drilled through the Campbell 'skin drift' in ca. 4500 m water depth on the mid-western margin of the extensive Campbell Nodule Field, beneath the flow of the major cold-water Deep Western Boundary Current (DWBC). In the absence of detailed biostratigraphy, beryllium isotopes have provided essential time information to allow palaeo-environmental interpretation to be undertaken on the upper 7 m of the core. Measured 10Be/9Be ratios of sediment, and of ferromanganese nodules entrapped in the sediment, decrease systematically with depth in the core, in accordance with radioactive decay. However, the 10Be/9Be data diverge from ca. 3 m below the seafloor (mbsf) to the top of the core, giving rise to several possible geochronological models. The preferred model assumes that the measured 10Be/9Be ratios of the nodule rims reflect initial 10Be/9Be ratios equivalent to contemporary seawater, and that these can be used to derive the true age of the sediment where the nodules occur. The nodule rim ages can be then used to interpret the sediment 10Be/9Be data, which indicate an overall age to ca. 7 mbsf of ca. 17.5 Ma. The derived chronology is consistent with diatom biostratigraphy, which indicates an age of 2.2-3.6 Ma at 1 mbsf. Calculated sedimentation rates range from 8 to 95 cm m.y.**-1, with an overall rate to 7 mbsf of ca. 39 cm m.y.**-1. The lowest rates generally coincide with the occurrence of entrapped nodules, and reflect periods of increased bottom current flow causing net sediment loss. Growth rates of individual nodules decrease towards the top of the sediment core, similar to the observed decrease in growth rate from core to rim of seafloor nodules from the Campbell Nodule Field. This may be related to an overall increase in the vigour of the DWBC from ca. 10 Ma to the present.
Resumo:
The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.
Resumo:
Two decades ago, Merrihue (1964) reported 3He/4He ratios of >10**-4 in ferromagnetic separates from a Pacific deep ocean red clay and concluded that the high ratio is due to extraterrestrial debris amounting to ~1% of the sediment. A decade later Krylov et al. (1973) compiled 3He/4He isotopic data on ocean sediments measured in the Soviet Union and observed that the 3He/4He ratio is generally higher in pelagic sediments where the sedimentation rate is lower. They suggested that the high 3He/4He ratio was attributable to extraterrestrial materials which were concentrated in slowly accumulating ocean floor. However, these important discoveries were almost completely neglected until we re-examined the problem. We have measured 39 sediments from 12 different sites, 10 sites from the western to central Pacific and two sites from the Atlantic Ocean. We find 3He/4He ratios >5 * 10**-5 for six sites, well above the values generally observed in common terrestrial materials. The very high 3He/4He ratio in the sediments is probably due to input of extraterrestrial materials. Input of stratospheric dust of <1 p.p.m., which corresponds to a fallout rate of ~2,000 tons per year, can explain the observation.
Resumo:
Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.
Resumo:
We have analysed the concentrations of Li, K, Rb, Cs, and B, and the isotopic ratios of Li and B of a suite of pore fluids recovered from ODP Sites 1037 (Leg 169; Escanaba Trough) and 1034 (Leg 169S; Saanich Inlet). In addition, we have analysed dissolved K, Rb, and Cs concentrations for estuarine mixing of the Ganges-Brahmaputra river system. Together, these data sets have been used to assess the role of sediments in the marine geochemical cycles of the alkali elements and boron. Uptake onto clay minerals during estuarine mixing removes 20-30% of the riverine input of dissolved Cs and Rb to the oceans. Prior to this study, the only other recognised sink of Rb and Cs was uptake during low-temperature alteration of the oceanic crust. Even with this additional sink there is an excess of inputs over outputs in their modern oceanic mass balance. Pore fluid data show that Li and Rb are transferred into marine sediments during early diagenesis. However, modeling of the Li isotope systematics of the pore fluids from Site 1037 shows that seawater Li taken up during marine sedimentation can be readily returned to solution in the presence of less hydrated cations, such as NH4+. This process also appears to result in high concentrations of pore fluid Cs (relative to local seawater) due to expulsion of adsorbed Cs from cation exchange sites. Flux calculations based on pore fluid data for a series of ODP sites indicate that early diagenesis of clay sediments removes around 8% of the modern riverine input of dissolved Li. Although NH4+-rich fluids do result in a flux of Cs to the oceans, on the global scale this input only augments the modern riverine Cs flux by ~3%. Nevertheless, this may have implications for the fate of radioactive Cs in the natural environment and waste repositories.
Resumo:
Gravity cores obtained from isolated seamounts located within, and rising up to 300 m from the sediment-filled Peru-Chile Trench off Southern Central Chile (36°S-39°S) contain numerous turbidite layers which are much coarser than the hemipelagic background sedimentation. The mineralogical composition of some of the beds indicates a mixed origin from various source terrains while the faunal assemblage of benthic foraminifera in one of the turbidite layers shows a mixed origin from upper shelfal to middle-lower bathyal depths which could indicate a multi-source origin and therefore indicate an earthquake triggering of the causing turbidity currents. The bathymetric setting and the grain size distribution of the sampled layers, together with swath echosounder and sediment echosounder data which monitor the distribution of turbidites on the elevated Nazca Plate allow some estimates on the flow direction, flow velocity and height of the causing turbidity currents. We discuss two alternative models of deposition, both of which imply high (175-450 m) turbidity currents and we suggest a channelized transport process as the general mode of turbidite deposition. Whether these turbidites are suspension fallout products of thick turbiditic flows or bedload deposits from sheet-like turbidity currents overwhelming elevated structures cannot be decided upon using our sedimentological data, but the specific morphology of the seamounts rather argues for the first option. Oxygen isotope stratigraphy of one of the cores indicates that the turbiditic sequences were deposited during the last Glacial period and during the following transition period and turbiditic deposition stopped during the Holocene. This climatic coupling seems to be dominant, while the occurrence of megathrust earthquakes provides a trigger mechanism. This seismic triggering takes effect only during times of very high sediment supply to the shelf and slope.
Resumo:
"Fallout Studies Branch, Division of Biology and Medicine, AEC."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.