1000 resultados para QSAR modeling
Resumo:
The optical constants epsilon(E)=epsilon(1)(E)+iepsilon(2)(E) of unintentionally doped cubic GaN grown on GaAs(001) have been measured at 300 K using spectral ellipsometry in the range of 1.5-5.0 eV. The epsilon(E) spectra display a structure, associated with the critical point at E-0 (direct gap) and some contribution mainly coming from the E-1 critical point. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden-Munoz model dielectric function [M. Munoz et al., J. Appl. Phys. 92, 5878 (2002)]. This model is based on the electronic energy-band structure near critical points plus excitonic and band-to-band Coulomb-enhancement effects at E-0, E-0 + Delta(0) and the E-1, E-1 + Delta(1), doublet. In addition to evaluating the energy of the E-0 critical point, the binding energy (R-1) of the two-dimensional exciton related to the E-1 critical point was estimated using the effective mass/k.p theory. The line, shape of the imaginary part of the cubic-GaN dielectric function shows excitonic effects at room temperature not withstanding that the exciton was not resolved. (C) 2003 American Institute of Physics.
Resumo:
The bonding behavior of silicon wafers depends on activation energy for the formation of siloxane bonds. In this article we developed a quantitative model on the dynamics of silicon wafer bonding during annealing. Based on this model, a significant difference in the bonding behaviors is compared quantitatively between the native oxide bonding interface and the thermal oxide bonding interface. The results indicate that the bonding strength of the native oxide interface increases with temperature much more rapidly than that of the thermal oxide interface. (C) 2000 American Institute of Physics. [S0021-8979(00)05520-1].
Resumo:
We have studied the growth of GaInNAs by a plasma-assisted molecular-beam epitaxy (MBE). It was found that the N-radicals were incorporated into the epitaxial layer like dopant atoms. In the range of 400-500 degrees C, the growth temperature (T-g) mainly affected the crystal quality of GaInNAs rather than the N concentration. The N concentration dropped rapidly when T-g exceeded 500 degrees C. Considering N desorption alone is insufficient to account for the strong falloff of the N concentration with T-g over 500 degrees C, the effect of thermally-activated N surface segregation must be taken into account. The N concentration was independent of the arsenic pressure and the In concentration in GaInNAs layers, but inversely proportional to the growth rate. Based on the experimental results, a kinetic model including N desorption and surface segregation was developed to analyze quantitatively the N incorporation in MBE growth. (C) 2000 American Institute of Physics. [S0003-6951(00)00928-1].
Resumo:
A neural network-based process model is proposed to optimize the semiconductor manufacturing process. Being different from some works in several research groups which developed neural network-based models to predict process quality with a set of process variables of only single manufacturing step, we applied this model to wafer fabrication parameters control and wafer lot yield optimization. The original data are collected from a wafer fabrication line, including technological parameters and wafer test results. The wafer lot yield is taken as the optimization target. Learning from historical technological records and wafer test results, the model can predict the wafer yield. To eliminate the "bad" or noisy samples from the sample set, an experimental method was used to determine the number of hidden units so that both good learning ability and prediction capability can be obtained.
Resumo:
Various concepts have been proposed or used in the development of rheological models for debris flow. The earliest model developed by Bagnold was based on the concept of the “dispersive” pressure generated by grain collisions. Bagnold’s concept appears to be theoretically sound, but his empirical model has been found to be inconsistent with most theoretical models developed from non-Newtonian fluid mechanics. Although the generality of Bagnold’s model is still at issue, debris-flow modelers in Japan have generally accepted Takahashi’s formulas derived from Bagnold’s model. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold’s concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i.e., the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical, for general use in debris-flow modeling. In fact, Bagnold’s model is found to be only a particular case of the GVF model. Analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold’s simplified assumption of constant grain concentration.
Resumo:
Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristicsespecially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input samewere simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.
Resumo:
In a slagging combustor or furnace, the high combustion temperature makes the molten slag layer cover the wall and capture the particles. If these particles contain combustible matter, they will continue to burn on the running slag. As a result, the total amount of ash deposition will be much greater than that in dry-wall combustors and the total heat flux through the deposition surface will change greatly. Considering the limitations of existing simulation methods for slagging combustion, this paper introduces a new wall burning model and slag flow model from the analysis; of particle deposition phenomena. Combined with a conventional combustion simulation program, the total computational frame is introduced. From comparisons of simulation results from several kinds of methods with experimental data, the conclusion is drawn that the conventional simulation methods are not very suitable for slagging combustion and the wall burning mechanism should be considered more thoroughly.