1000 resultados para Pressure.
Resumo:
Full Paper: A study has been made on the annealing of nylon-1010 under high pressures. Heat treatment of melt-crystallized nylon-1010 was performed at 250degreesC for 30 min in the pressure range 0.7 similar to 2.5 GPa. It was found that the triclinic crystals of virgin nylon-1010 were retained at pressures less than 1.0 GPa or larger than 1.2 GPa. The X-ray diffraction intensity of (100) planes decreased with increasing pressure. The diffraction peaks shifted slightly to higher angles (2theta) relative to the virgin nylon-1010, indicating dense packing of polymer chains at high pressures. The highest melting temperature was 208degreesC for the sample annealed at 1.5 GPa. No extended-chain crystals were formed under the experimental conditions. Crosslinking occurred in the pressure range 1.0 similar to 1.2 GPa. The structure of the crosslinked samples was characterized by means of infrared spectroscopy and X-ray photoelectron spectroscopy. It is concluded that a mechanism of crosslinking via carbodiimide can explain the nature of crosslinking of nylon-1010 annealed at high pressures. The remarkable changes of the structure of annealed nylon-1010 are also discussed in this article.
Resumo:
In the framework of lattice fluid model, the Gibbs energy and equation of state are derived by introducing the energy (E-s) stored during flow for polymer blends under shear. From the calculation of the spinodal of poly(vinyl methyl ether) (PVME) and polystyrene (PS) mixtures, we have found the influence of E., an equation of state in pure component is inappreciable, but it is appreciable in the mixture. However, the effect of E, on phase separation behavior is extremely striking. In the calculation of spinodal for the PVME/PS system, a thin, long and banana miscibility gap generated by shear is seen beside the miscibility gap with lower critical solution temperature. Meanwhile, a binodal coalescence of upper and lower miscibility gaps is occurred. The three points of the three-phase equilibrium are forecasted. The shear rate dependence of cloud point temperature at a certain composition is discussed. The calculated results are acceptable compared with the experiment values obtained by Higgins et at. However, the maximum positive shift and the minimum negative shift of cloud point temperature guessed by Higgins are not obtained, Furthermore, the combining effects of pressure and shear on spinodal shift are predicted.
Resumo:
A high temperature and high pressure method was used to efficiently and selectively extract metallofullerenes Ln(m)@C-2n,(Ln = Y, Gd, Tb) in a closed stainless steel autoclave under inert gas protection. 1, 2, 3-Trichlorobenzene was found to be more effective and selective for the extraction of Ln@C-82 (Ln=Y, Gd, Tb) from empty fullerenes and other metallofullerene species.
Resumo:
The structure and thermal properties of polyamide-1010 (PA1010), treated at 250degreesC for 30 min under pressures of 0.7-2.5 GPa, were studied with wide-angle X-ray diffraction (WAXD), infrared (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Crystals were formed when the pressures were less than 1.0 GPa or greater than 1.2 GPa. With increasing pressure, the intensity of the diffraction peak at approximately 24degrees was enhanced, whereas the peak at approximately 20degrees was depressed. The triclinic crystal structure of PA1010 was preserved. The highest melting temperature of the crystals obtained in this work was 208degreesC for PA1010 treated at 1.5 GPa. Crosslinking occurred under pressures of 1.0-1.2 GPa. Only a broad diffraction peak centered at approximately 20degrees was observed on WAXD patterns, and no melting and crystallization peaks were found on DSC curves. IR spectra of crosslinked PA1010 showed a remarkable absorption band at 1370 cm(-1). The N-H stretching vibration band at 3305 cm(-1) was weakened. Crystallized PA1010 had a higher thermal stability than crosslinked PA1010, as indicated on TGA curves by a higher onset temperature of decomposition.
Resumo:
Nanopowders of amorphous silicon nitride were densified and sintered without additives under ultrahigh pressure (1.0-5.0 GPa) between room temperature and 1600 degrees C. The powders had a mean diameter of 18 nm and contained similar to 5.0 wt% oxygen that came from air-exposure oxidation, Sintering results at different temperatures were characterized in terms of sintering density, hardness, phase structure, and grain size. It was observed that the nanopowders can be pressed to a high density (87%) even at room temperature under the high pressure. Bulk Si3N4 amorphous and crystalline ceramics (relative density: 95-98%) were obtained at temperatures slightly below the onset of crystallization (1000-1100 degrees C and above 1420 degrees C, respectively. Rapid grain growth occurred during the crystallization leading to a grain size (>160 nm) almost 1 order of magnitude greater than the starting particulate diameters, With the rise of sintering temperature, a final density was reached between 1350 and 1420 degrees C, which seemed to be independent of the pressure applied (1.0-5.0 GPa), The densification temperature observed under the high pressure is lower by 580 degrees C than that by hot isostatic pressing sintering, suggesting a significantly enhanced low-temperature sintering of the nanopowders under a high external pressure.
Resumo:
By using a novel high-pressure, high-temperature method, perovskite oxides of La1-xNaxTiO3 (x = 0.05, 0.1-0.8) with mixed valence state were synthesized. XRD analysis shows a cubic cell for the samples. Cell volumes of the samples with 0.1 less than or equal to x less than or equal to 0.5 decreases as x increases, and the cell Volume for x = 0.05 is smaller than that for x = 0.1. XPS of surface and EPR measurements indicate that Ti ions are of mixed valence of +3 and +4 and that A-cations vacancies exist in the samples. As x increases, the amount of Ti3+ ions decreases and the amount of A-cations vacancies increases. The valence state of Ti ions can be altered by changing both pressure and temperature. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Perovskite oxides LaTi1-xMgxO3 (x = 0.25, 0.5) were synthesized using high-pressure and-temperature method. LaTi0.75Mg0.25O3 is a new compound. This new synthesis route has some advantages. XRD analysis showed that the x = 0.25 sample belongs to cubic perovskite-type structure and the a = 0.5 sample belongs to orthorhombic perovskite-type structure. EPR measurement indicated that Ti ions were in mixed valence state of +3 and +4. IR measurement indicated that the vibration frequency and width of BO6 octahedron stretching vibration absorption band decreases with the increasing of x. The valence state of Ti ions can be altered by high-pressure and-temperature. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
With the aid of Sanchez-Lacombe lattice fluid theory (SLLFT), the phase diagrams were calculated for the system cyclohexane (CH)/polystyrene (PS) with different molecular weights at different pressures. The experimental data is in reasonable agreement with SLLFT calculations. The total Gibbs interaction energy, g*(12) for different molecular weights PS at different pressures was expressed, by means of a universal relationship, as g(12)* =f(12)* + (P - P-0) nu*(12) demixing curves were then calculated at fixed (near critical) compositions of CH and PS systems for different molecular weights. The pressures of optimum miscibility obtained from the Gibbs interaction energy are close to those measured by Wolf and coworkers. Furthermore, a reasonable explanation was given for the earlier observation of Saeki et al., i.e., the phase separation temperatures of the present system increase with the increase of pressure for the low molecular weight of the polymer whereas they decrease for the higher molecular weight polymers. The effects of molecular weight, pressure, temperature and composition on the Flory Huggins interaction parameter can be described by a general equation resulting from fitting the interaction parameters by means of Sanchez-Lacombe lattice fluid theory.
Reaction and formation of crystalline silicon oxynitride in Si-O-N systems under solid high pressure
Resumo:
Oxidized amorphous Si3N4 and SiO2 powders were pressed alone or as a mixture under high pressure (1.0-5.0 GPa) at high temperatures (800-1700 degreesC). Formation of crystalline silicon oxynitride (Si(2ON)2) was observed from amorphous silicon nitride (Si3N4) powders containing 5.8 wt% oxygen at 1.0 GPa and 1400 degreesC, The Si2ON2 coexisted with beta -Si3N4 with a weight fraction of 40 wt%, suggesting that all oxygen in the powders participated in the reaction to form Si2ON2. Pressing a mixture of amorphous Si3N4 of lower oxygen (1.5 wt%) and SiO2 under 1.0-5.0 GPa between 1000 degrees and 1350 degreesC did not give Si2ON2 phase, but yielded a mixture of alpha,beta -Si3N4, quartz, and coesite (a high-pressure form of SiO2). The formation of Si2ON2, from oxidized amorphous Si3N4 seemed to be assisted by formation of a Si-O-N melt in the system that was enhanced under the high pressure.
Resumo:
The crystallization and phase transformation of amorphous Si3N4 ceramics under high pressure (1.0-5.0 GPa) between 800 and 1700 degreesC were investigated. A greatly enhanced crystallization and alpha-beta transformation of the amorphous Si3N4 ceramics were evident under the high pressure, as characterized by that, at 5.0 GPa, the amorphous Si3N4, began to crystallize at a temperature as low as 1000 degreesC (to transform to alpha modification). The subsequent alpha-beta transformation occurred completed between 1350 and 1420 degreesC after only 20 min of pressing at 5.0 GPa. In contrast, under 0.1 MPa N-2, the identical amorphous materials were stable up to 1400 degreesC without detectable crystallization, and only a small amount of a phase was detected at 1500 degreesC. The crystallization temperature and the alpha-beta transformation temperatures are reduced by 200-350 degreesC compared to that at normal pressure. The enhanced phase transformations of the amorphous Si3N4, were discussed on the basis of thermodynamic and kinetic consideration of the effects of pressure on nucleation and growth.
Resumo:
A high pressure and high temperature method was used to efficiently extract on a large scale metallofullerenes M@C-2n (M=La,Ce) in a closed vessel under argon gas protection. With pyridine as the HPHT solvent, about 60-80% M@C-2n and 30-55% M@C-82 can be enriched, M@C-82 is dissolved selectively; With toluene as the HPHT solvent, M@C-2n can also be efficiently extracted, especially M@C-74, which is a new member of M@C-2n soluble species. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The traditional Soxhlet extraction of lanthanofullerenes was improved and the high temperature and high pressure method with different extraction solvents was used. It's found that La@C-2n can be efficiently extracted with toluene and pyridine from the insoluble part of the soot after the toluene Soxhlet extraction. Pyridine can more efficiently and selectively extract lanthofullerenes, especially La@C-82, while toluene can extract La@C-74, which is a new member added to the soluble species to lanthanofullerenes.
Resumo:
High-pressure synthesis of garnet Gd3In2Ga3O12 is reported. It was found that the pressure-temperature region for the synthesis of Gd3In2Ga3O12 can be expressed as T(degrees C) < 2350-250P(GPa), and high pressure greatly reduced the reaction time. It was also found that the garnet Gd3In2Ga3O12 decomposed to GdGaO3 and In2O3 under 3.5 GPa and 1650 degrees C, and this process was accompanied by an increasing density of the products and an increasing coordination number for Ga3+ (4 to 6).
Resumo:
The curing temperature, pressure, and curing time have significant influence on finished thermosetting composite products. The time of pressure application is one of the most important processing parameters in the manufacture of a thermosetting composite. The determination of the time of pressure application relies on analysis of the viscosity variation of the polymer, associated with curing temperature and curing time. To determine it, the influence of the time of pressure application on the physical properties of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based continuous carbon fiber composite was studied. It was found that a stepwise temperature cure cycle is more suitable for manufacture of this composite. There are two viscosity valleys, in the case of the E-PEK system, associated with temperature during a stepwise cure cycle. The analysis on the effects of reinforcement fraction and defect content on the composite sheet quality indicates that the width-adjustable second viscosity valley provides a suitable pressing window. The viscosity, ranging from 400 to 1200 Pa . s at the second viscosity valley, is the optimal viscosity range for applying pressure to ensure appropriate resin flow during curing process, which enables one to get a finished composite with optimal fiber volume fraction and low void content. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A high-temperature, high-pressure extraction technique with toluene and pyridine were employed for the extraction of metallofullerenes Gd@C-2n, A series of Gd@C-2n for 2n from 70 to 96 were effectively extracted by toluene. Gd@C-74 was shown to be a new stable soluble metallofullerene species. Pyridine was found to be more useful for the extraction of Gd@C-82 and Gd-2@C-80 from empty fullerenes and other metallofullerene species.