993 resultados para Precise learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well recognized that many scientifically interesting sites on Mars are located in rough terrains. Therefore, to enable safe autonomous operation of a planetary rover during exploration, the ability to accurately estimate terrain traversability is critical. In particular, this estimate needs to account for terrain deformation, which significantly affects the vehicle attitude and configuration. This paper presents an approach to estimate vehicle configuration, as a measure of traversability, in deformable terrain by learning the correlation between exteroceptive and proprioceptive information in experiments. We first perform traversability estimation with rigid terrain assumptions, then correlate the output with experienced vehicle configuration and terrain deformation using a multi-task Gaussian Process (GP) framework. Experimental validation of the proposed approach was performed on a prototype planetary rover and the vehicle attitude and configuration estimate was compared with state-of-the-art techniques. We demonstrate the ability of the approach to accurately estimate traversability with uncertainty in deformable terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical requirement for safe autonomous navigation of a planetary rover is the ability to accurately estimate the traversability of the terrain. This work considers the problem of predicting the attitude and configuration angles of the platform from terrain representations that are often incomplete due to occlusions and sensor limitations. Using Gaussian Processes (GP) and exteroceptive data as training input, we can provide a continuous and complete representation of terrain traversability, with uncertainty in the output estimates. In this paper, we propose a novel method that focuses on exploiting the explicit correlation in vehicle attitude and configuration during operation by learning a kernel function from vehicle experience to perform GP regression. We provide an extensive experimental validation of the proposed method on a planetary rover. We show significant improvement in the accuracy of our estimation compared with results obtained using standard kernels (Squared Exponential and Neural Network), and compared to traversability estimation made over terrain models built using state-of-the-art GP techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2012, Australia introduced a new National Quality Framework, comprising enhanced quality expectations for early childhood education and care services, two national learning frameworks and a new Assessment and Rating System spanning child care centres, kindergartens and preschools, family day care and outside school hours care. This is the linchpin in a series of education reforms designed to support increased access to higher quality early childhood education and care (ECEC) and successful transition to school. As with any policy change, success in real terms relies upon building shared understanding and the capacity of educators to apply new knowledge and to support change and improved practice within their service. With this in mind, a collaborative research project investigated the efficacy of a new approach to professional learning in ECEC: the professional conversation. This paper reports on the trial and evaluation of a series of professional conversations to support implementation of one element of the NQF, the Early Years Learning Framework (DEEWR,2009), and their capacity to promote collaborative reflective practice, shared understanding, and improved practice in ECEC. Set against the backdrop of the NQF, this paper details the professional conversation approach, key challenges and critical success factors, and the learning outcomes for conversation participants. Findings support the efficacy of this approach to professional learning in ECEC, and its capacity to support policy reform and practice change in ECEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to increase the accuracy of patient positioning for complex radiotherapy treatments various 3D imaging techniques have been developed. MegaVoltage Cone Beam CT (MVCBCT) can utilise existing hardware to implement a 3D imaging modality to aid patient positioning. MVCBCT has been investigated using an unmodified Elekta Precise linac and 15 iView amorphous silicon electronic portal imaging device (EPID). Two methods of delivery and acquisition have been investigated for imaging an anthropomorphic head phantom and quality assurance phantom. Phantom projections were successfully acquired and CT datasets reconstructed using both acquisition methods. Bone, tissue and air were 20 clearly resolvable in both phantoms even with low dose (22 MU) scans. The feasibility of MegaVoltage Cone beam CT was investigated using a standard linac, amorphous silicon EPID and a combination of a free open source reconstruction toolkit as well as custom in-house software written in Matlab. The resultant image quality has 25 been assessed and presented. Although bone, tissue and air were resolvable 2 in all scans, artifacts are present and scan doses are increased when compared with standard portal imaging. The feasibility of MVCBCT with unmodified Elekta Precise linac and EPID has been considered as well as the identification of possible areas for future development in artifact correction techniques to 30 further improve image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer vision is increasingly becoming interested in the rapid estimation of object detectors. The canonical strategy of using Hard Negative Mining to train a Support Vector Machine is slow, since the large negative set must be traversed at least once per detector. Recent work has demonstrated that, with an assumption of signal stationarity, Linear Discriminant Analysis is able to learn comparable detectors without ever revisiting the negative set. Even with this insight, the time to learn a detector can still be on the order of minutes. Correlation filters, on the other hand, can produce a detector in under a second. However, this involves the unnatural assumption that the statistics are periodic, and requires the negative set to be re-sampled per detector size. These two methods differ chie y in the structure which they impose on the co- variance matrix of all examples. This paper is a comparative study which develops techniques (i) to assume periodic statistics without needing to revisit the negative set and (ii) to accelerate the estimation of detectors with aperiodic statistics. It is experimentally verified that periodicity is detrimental.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The author, Dean Shepherd, is of entrepreneurship—how entrepreneurs think, decide to act, and feel. He recently realized that while his publications in academic journals have implications for entrepreneurs, those implications have remained relatively hidden in the text of the articles and hidden in articles published in journals largely inaccessible to those involved in the entrepreneurial process. This series is designed to bring the practical implications of his research to the forefront.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction This paper reports on university students' experiences of learning information literacy. Method Phenomenography was selected as the research approach as it describes the experience from the perspective of the study participants, which in this case is a mixture of undergraduate and postgraduate students studying education at an Australian university. Semi-structured, one-on-one interviews were conducted with fifteen students. Analysis The interview transcripts were iteratively reviewed for similarities and differences in students' experiences of learning information literacy. Categories were constructed from an analysis of the distinct features of the experiences that students reported. The categories were grouped into a hierarchical structure that represents students' increasingly sophisticated experiences of learning information literacy. Results The study reveals that students experience learning information literacy in six ways: learning to find information; learning a process to use information; learning to use information to create a product; learning to use information to build a personal knowledge base; learning to use information to advance disciplinary knowledge; and learning to use information to grow as a person and to contribute to others. Conclusions Understanding the complexity of the concept of information literacy, and the collective and diverse range of ways students experience learning information literacy, enables academics and librarians to draw on the range of experiences reported by students to design academic curricula and information literacy education that targets more powerful ways of learning to find and use information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital tablets have been identified as a tool for enabling blended learning and supporting online teaching and learning. A small scale trial was undertaken to assess the effectiveness of this technology when applied to power engineering education. Critical findings and experiences gained from this trial, including potential benefits, presentation techniques and the resulting student feedback are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives This paper reports on the preferred learning styles of Registered Nurses practicing in acute care environments and relationships between gender, age, post-graduate experience and the identified preferred learning styles. Methods A prospective cohort study design was used. Participants completed a demographic questionnaire and the Felder-Silverman Index of Learning Styles (ILS) questionnaire to determine preferred learning styles. Results Most of the Registered Nurse participants were balanced across the Active-Reflective (n = 77, 54%), and Sequential-Global (n = 96, 68%) scales. Across the other scales, sensing (n = 97, 68%) and visual (n = 76, 53%) were the most common preferred learning style. There were only a small proportion who had a preferred learning style of reflective (n = 21, 15%), intuitive (n = 5, 4%), verbal (n = 11, 8%) or global learning (n = 15, 11%). Results indicated that gender, age and years since undergraduate education were not related to the identified preferred learning styles. Conclusions The identification of Registered Nurses’ learning style provides information that nurse educators and others can use to make informed choices about modification, development and strengthening of professional hospital-based educational programs. The use of the Index of Learning Styles questionnaire and its ability to identify ‘balanced’ learning style preferences may potentially yield additional preferred learning style information for other health-related disciplines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning programming is known to be difficult. One possible reason why students fail programming is related to the fact that traditional learning in the classroom places more emphasis on lecturing the material instead of applying the material to a real application. For some students, this teaching model may not catch their interest. As a result they may not give their best effort to understand the material given. Seeing how the knowledge can be applied to real life problems can increase student interest in learning. As a consequence, this will increase their effort to learn. Anchored learning that applies knowledge to solve real life problems may be the key to improving student performance. In anchored learning, it is necessary to provide resources that can be accessed by the student as they learn. These resources can be provided by creating an Intelligent Tutoring System (ITS) that can support the student when they need help or experience a problem. Unfortunately, there is no ITS developed for the programming domain that has incorporated anchored learning in its teaching system. Having an ITS that supports anchored learning will not only be able to help the student learn programming effectively but will also make the learning process more enjoyable. This research tries to help students learn C# programming using an anchored learning ITS named CSTutor. Role playing is used in CSTutor to present a real world situation where they develop their skills. A knowledge base using First Order Logic is used to represent the student's code and to give feedback and assistance accordingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter focuses on ‘intergenerational collaborative drawing’, a particular process of drawing whereby adults and children draw at the same time on a blank paper space. Such drawings can be produced for a range of purposes, and based on different curriculum or stimulus subjects. Children of all ages, and with a range of physical and intellectual abilities are able to draw with parents, carers and teachers. Intergenerational collaborative drawing is a highly potent method for drawing in early childhood contexts because it brings adults and children together in the process of thinking and theorizing in order to create visual imagery and this exposes in deep ways to adults and children, the ideas and concepts being learned about. For adults, this exposure to a child’s thinking is a far more effective assessment tool than when they are presented with a finished drawing they know little about. This chapter focuses on drawings to examine wider issues of learning independence and how in drawing, preferred schema in the form of hand-out worksheets, the suggestive drawings provided by adults, and visual material seen in everyday life all serve to co-opt a young child into making particular schematic choices. I suggest that intergenerational collaborative drawing therefore serves to work as a small act of resistance to that co-opting, in that it helps adults and children to collectively challenge popular creativity and learning discourses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.