962 resultados para Phase type (PH)distribution
Resumo:
With the aid of thermodynamics of Gibbs, the expression of the spinodal was derived for the polydisperse polymer-solvent system in the framework of Sanchez-Lacombe Lattice Fluid Theory (SLLFT). For convenience, we considered that a model polydisperse polymer contains three sub-components. According to our calculation, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights of the polydisperse polymer, but the z-average molecular weight ((M) over bar (z)) dependence on the spinodal is invisible. The dependence of free volume on composition, temperature, molecular weight, and its distribution results in the effect of (M) over bar (n) on the spinodal. Moreover, it has been found that the effect of changing (M) over bar (w) on the spinodal is much bigger than that of changing (M) over bar (n) and the extrema of the spinodal increases with the rise of the weight-average molecular weight of the polymer in the solutions with upper critical solution temperature (UCST). However, the effect of polydispersity on the spinodal can be neglected for the polymer with a considerably high weight-average molecular weight. A more simple expression of the spinodal for the polydisperse polymer solution in the framework of SLLFT was also derived under the assumption of upsilon(*)=upsilon(1)(*)=upsilon(2)(*) and (1/r(1)(0))-(1/r(2i)(0))-->(1/r(1)(0)).
Resumo:
Through layer-by-layer assembly, the bis-Keggin-type heteropolyanion K10H3 [Nd(SiMo7W4O39)(2)] XH2O was successfully immobilized on a glassy carbon electrode surface grafted covalently by 4-aminobenzoic acid. The electrochemical behavior of the heteropolyanion was investigated. Cyclic voltammetry proved the uniform growth of the film. However, the characteristic redox peaks of the heteropolyanion in the film were deformed with increasing of the number of the multilayer film. The effect of pH on the redox behaviors of [Nd(SiMo7W4)(2)](13-) in the film was discussed. The multilayer film electrodes have excellent electrocatalytic activities to the reduction of BrO3-, HNO2 and H2O2.
Resumo:
A distorted layered perovskite compound BaTb2Mn2O7 was synthesized by the solid state reaction in pure argon. There is a structural phase transition in the BaTb2Mn2O7 compound. The phase transition was characterized by the DSC and high temperature Xray diffraction. The heat capacity of BaTb2Mn2O7 was calculated. The thermal anomaly corresponding to the phase transition was observed at about 740K. The lattice parameters were calculated by the CELL program for BaTb2Mn2O7, It has Tb-type orthorhombic symmetry with a = 0.3908 nm, b = 0.3866 nm, c = 2.0163 nm, and space group Immm at room temperature. With the increase of temperature, the lattice parameters gradually increase until 673K. From 723K to 973K, the compound translates to tetragonal with a = 0.39078 nm, c = 2.0277 nm and S.G. I4/mmm. This result is fairly in accordance with that of heat capacity.
Resumo:
The preparation, structure, and electrochemical and electrocatalytical properties of a new polyoxometalate-based organic/inorganic film, composed of cetyl pyridinum 11-molybdovanadoarsenate (CPMVA) molecules, have been studied. Cyclic potential scanning in acetone solution led to a stable CPMVA film formed on a highly oriented pyrolytic graphite (HOPG) surface. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used for characterizing the structure and properties of the CPMVA film. These studies indicated that self-aggregated clusters were formed on a freshly cleaved HOPG surface, while a self-organized monolayer was formed on the precathodized HOPG electrode. The CPMVA film exhibited reversible redox kinetics both in acidic aqueous and in acetone solution, which showed that it could be used as a catalyst even in organic phase. The CPMVA film remained stable even at pH > 7.0, and the pH dependence of the film was much smaller than that of its inorganic film (H4AsMo11VO40) in aqueous solution. The CPMVA film showed strong electrocatalysis on the reduction of bromate, and the catalytic currents were proportional to the square of the concentration of bromate. The new kind of polyoxometalate with good stability may have extensive promise in catalysis.
Resumo:
Through layer-by-layer assembly, undecatungstozincates monosubstituted by transition metals Mn, ZnW11 Mn (H2O) O-39(8-) was successfully immobilized on a glassy carbon electrode surface grafted covalently by 4-aminobenzoic acid. The electrochemical behavior of these polyoxometalates was investigated. Cyclic voltammetry proves the uniform growth of the film. They exhibit some special electrochemical properties in the films, different from those in homogeneous aqueous solution. The effect of pH on the redox behavior of ZnW11Mn(H2O)O-39(8-) in the film was discussed in detail. The multilayer film electrodes have an excellent electrocatalytic response to the reduction of H2O2 and BrO3-, and to the oxidation of ascorbic acid.
Resumo:
A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.
Resumo:
The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system.
Resumo:
The dependence of the structure of the hosts on the M ion radius in MMgAl10O17 (M = Be, Mg, Ca, Sr, Ba, Pb, Eu, Mn, Fe, Co, Ni, Zn, Cd, Sn) system was studied and the luminescence of Eu2+ the mixed phase system was discussed. When M ion radius is less than 0.10 nm, the system MMgAl10O17 constructs by the mixed phases consisting of manegtoplumbite and spinel, alpha-alumina or spinel and alpha-alumina. In the mixed phase of manegtoplumbite and spinel and alpha-alumina, Eu2+ ion preferentially occupies lattice site of the cations in manegtoplumbite well matched with the radius and charge of Eu2+. There exists only d-->f transition emission of Eu2+ and no characteristic emission of Eu3+ occurs in those hosts. In the mixed phase of spinel and alpha-alumina, Eu2+ can enter the lattice site of Mg2+ ion or Al3+ ion and the d-->f and f-->f transition of Eu2+ can been observed respectively. Meanwhile, since the radius and charge of matrix lattice ions substituted by Eu2+ do not match with those of Eu2+, the valence state of Eu2+ is unstable. Eu2+ is partly changed into Eu3+ and the emission of Eu3+ is obviously observed even under the condition of reduction atmosphere. If reaction temperature is more than 1 150 degrees C, Al2O3 forms alpha-Al2O3 structure, the f-->f transition of Eu2+ appears. If reaction temperature is less than 1 150 degrees C, a mixed phase of alpha-Al2O3 and gamma-Al2O3 is formed, the f-->f transition of Eu2+ disappears and a new band emission from d-->f transition of Eu2+ occurs.
Resumo:
A series of liquid crystalline copolyethers has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane and different alpha,omega-dibromoalkanes [coTPP(n/m)]. In this report, coTPPs having n = 5, 7, 9, 11 and m = 12 are studied, which represent copolyethers having both varying odd number and a fixed even number of methylene units. The compositions were fixed at an equal molar ratio (50/50). These coTPPs(nlm) show multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. The undercooling dependence of these transitions is found to be small, indicating that these transitions are close to equilibrium, Although the coTPPs possess a high-temperature nematic (N) phase, the periodicity order along the chain direction is increasingly disturbed when the length of the odd-numbered methylene units decreases from n 11 to 5. in the coTPPs(5/12, 7/12, and 9/12), wide-angle X-ray diffraction experiments at different temperatures show that, shortly after the N phase formation during cooling, the lateral molecular packing improves toward a hexagonal lattice, as evidenced by a gradual narrowing of the scattering halo. This process represents the possible existence of an exotic N phase, which serves as a precursor to the columnar (Phi(H)) phase. A further decrease in temperature leads to a (PH phase having a long-range ordered, two-dimensional hexagonal lattice. In coTPP(11/12), the phase structures are categorized as highly ordered and tilted, smectic and smectic crystal phases, similar to homoTPPs, such as the smectic F (S-F) and smectic crystal G (SCG) phases. An interesting observation is found for coTPP(9/12), wherein a structural change from the high-temperature Phi(H) phase to the low-temperature S-F phase occurs. It can be proven that, upon heating, the well-defined layer structure disappears and the lateral packing remains hexagonal. The overall structural differences in this series of coTPPs between those of the columnar and highly ordered smectic phases are related to the disorders introduced into the layer structure by the dissimilarity of the methylene unit lengths in the comonomers.
Resumo:
Hydrotalcite-like compounds (HTLcs): (CuMAlCO3)-Al-II-HTLcs, where M-II=Co2+, Ni2+, Cu2+, Zn2+ and Fe2+, were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs was studied in the phenol hydroxylation by H2O2 in liquid phase; then the effects of the ratio of Cu/Al, reaction temperature, solvent and pH of medium were investigated. It has been found that the uncalcined HTLcs have higher activities than those of calcined samples in this reaction. The catalyst CuAlCO3-HTLcs having Cu/Al=3 efficiently oxidized phenol and gave high yields of the corresponding diphenols in appropriate reaction conditions. A tentative reaction mechanism is also proposed. (C) 1998 Elsevier Science B.V.
Resumo:
Blends of high-density polyethylene (HDPE) with novel linear low-density polyethylene (LLDPE) samples in the whole range of compositions were investigated by means of differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The LLDPEs are ethylene/octene-1 copolymers prepared with a single-site catalyst, with a narrower distribution of branches compared to Ziegler-Natta type polymers. It was found that cocrystallization or separate crystallization in the blends profoundly depends on the content of branches in the LLDPE, while the critical branch content of the novel LLDPE for separate crystallization is much lower than that of commercial LLDPE (prepared with Ziegler-Natta catalysts). This implies that the miscibility of linear and branched polyethylene is also affected by the distribution of branches. The marked expansion of the unit cell in cocrystals, which are formed by HDPE with the novel LLDPE, indicates that the branches are included in the crystal lattice during the cocrystallization process. The result is very helpful to understand the phenomenon that the unit cell dimensions of commercial branched polyethylene are larger than those of linear polyethylene.
Resumo:
Concise probabilistic formulae with definite crystallographic implications are obtained from the distribution for eight three-phase structure invariants (3PSIs) in the case of a native protein and a heavy-atom derivative [Hauptman (1982). Acta Cryst. A38, 289-294] and from the distribution for 27 3PSIs in the case of a native and two derivatives [Fortier, Weeks & Hauptman (1984). Acta Cryst. A40, 646-651]. The main results of the probabilistic formulae for the four-phase structure invariants are presented and compared with those for the 3PSIs. The analysis directly leads to a general formula of probabilistic estimation for the n-phase structure invariants in the case of a native and m derivatives. The factors affecting the estimated accuracy of the 3PSIs are examined using the diffraction data from a moderate-sized protein. A method to estimate a set of the large-modulus invariants, each corresponding to one of the eight 3PSIs, that has the largest \Delta\ values and relatively large structure-factor moduli between the native and derivative is suggested, which remarkably improves the accuracy, and thus a phasing procedure making full use of all eight 3PSIs is proposed.
Resumo:
A reversed-phase high-performance liquid chromatography with series dual glassy carbon electrodes for the amperometric detection of water-soluble menadione is described. The complex post-column derivatization reaction and the high background currents were avoided. The menadione sodium bisulfite was reduced at -0.3 V vs. SCE at the upstream (generator) electrode and oxidized at +0.2V vs. SCE at the downstream (collector) electrode. The mobile phase was 0.2moll(-1) HAc-NaAc aqueous buffer (pH 5.50) and 40% (v/v) methanol. The linear response was in the range of 35 ng to 15 mu g, with a detection Limit of 15 ng (S/N=3). The correlation coefficient was 0.9997 (n=6). The electrochemical detection with series dual electrodes has a higher selectivity for menadione (vitamin K-3) compound than with UV detection.
Resumo:
The electrochemical behavior of Dawson-type P2W18O626- adsorbed on a glassy carbon electrode and doped in a polypyrrole film electrode was described. These modified electrodes all display catalytic activity for nitrite reduction, either in acid solutions or in pH > 4.0 solutions.
Resumo:
Two new chiral liquid crystals of schiff-base type have been synthesized. This series of compounds contain a-chloro acidic ester chain prepared from commercially available L-valine. Both of the compounds exhibit tilted smectic phases; their phase transitions were studied using DSC and polarized optical microscopy; the influence of intramolecular hydrogen bonds on the phase behavior was studied as well.