975 resultados para PHASE-ORDERING KINETICS
Resumo:
Phase-singular solid solutions of La0.6Sr0.4Mn1-yMeyO3 (0 <= y <= 0.3) [Me=Li1+, Mg2+, Al3+, Ti4+, Nb5+, Mo6+ or W6+] [LSMey] perovskite of rhombohedral symmetry (space group: R (3) over barc) have been prepared wherein the valence of the diamagnetic substituent at Mn site ranged from 1 to 6. With increasing y-content in LSMey, the metal-insulator (TM-I) transition in resistivity-temperature rho(T) curves shifted to low temperatures. The magnetization studies M(H) as well as the M(T) indicated two groups for LSMey. (1) Group A with Me=Mg, Al, Ti, or Nb which are paramagnetic insulators (PIs) at room temperature with low values of M (< 0.5 mu(B)/Mn); the magnetic transition [ferromagnetic insulator (FMI)-PI] temperature (T-C) shifts to low temperatures and nearly coincides with that of TM-I and the maximum magnetoresistance (MR) of similar to 50% prevails near T-C (approximate to TM-I). (2) Group-B samples with Me=Li, Mo, or W which are FMIs with M-s=3.3-3.58 mu(B)/Mn and marginal reduction in T-C similar to 350 K as compared to the undoped LSMO (T-C similar to 378 K). The latter samples show large temperature differences Delta T=T-c-TM-I, reaching up to similar to 288 K. The maximum MR (similar to 60%) prevails at low temperatures corresponding to the M-I transition TM-I rather than around T-C. High resolution lattice images as well as microscopy analysis revealed the prevalence of inhomogeneous phase mixtures of randomly distributed charge ordered-insulating (COI) bistripes (similar to 3-5 nm width) within FMI charge-disordered regions, yet maintaining crystallographically single phase with no secondary precipitate formation. The averaged ionic radius < r(B)>, valency, or charge/radius ratio < CRR > cannot be correlated with that of large Delta T; hence cannot be used to parametrize the discrepancy between T-C and TM-I. The M-I transition is controlled by the charge conduction within the electronically heterogeneous mixtures (COI bistripes+FMI charge disordered); large MR at TM-I suggests that the spin-ordered FM-insulating regions assist the charge transport, whereas the T-C is associated with the bulk spin ordered regions corresponding to the FMI phase of higher volume fraction of which anchors the T-C to higher temperatures. The present analysis showed that the double-exchange model alone cannot account for the wide bifurcation of the magnetic and electric transitions, contributions from the charge as well as lattice degrees of freedom to be separated from spin/orbital ordering. The heterogeneous phase mixtures (COI+FMI) cannot be treated as of granular composite behavior. (c) 2008 American Institute of Physics.
Resumo:
We report that an approximant phase was initially obtained in amorphous Ti40Zr20Hf20Pd20 alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (1) phase with a high thermal stability while the cF96 Zr2Ni-type (space group Fd (3) over barm with a = 1.25 nm and 96 atoms cell(-1)) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000 K and then transforms into the Zr2Ni-type phase with an endothermic reaction. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The activity of molybdenum dioxide (MoO2) in the MoO2–TiO2 solid solutions was measured at 1600 K using a solid-state cell incorporating yttria-doped thoria as the electrolyte. For two compositions, the emf was also measured as a function of temperature. The cell was designed such that the emf is directly related to the activity of MoO2 in the solid solution. The results show monotonic variation of activity with composition, suggesting a complete range of solid solutions between the end members and the occurrence of MoO2 with a tetragonal structure at 1600 K. A large positive deviation from Raoult's law was found. Excess Gibbs energy of mixing is an asymmetric function of composition and can be represented by the subregular solution model of Hardy as follows.The temperature dependence of the emf for two compositions is reasonably consistent with ideal entropy of mixing. A miscibility gap is indicated at a lower temperature with the critical point characterized by Tc (K)=1560 and . Recent studies indicate that MoO2 undergoes a transition from a monoclinic to tetragonal structure at 1533 K with a transition entropy of 9.91 J·(mol·K)−1. The solid solubility of TiO2 with rutile structure in MoO2 with a monoclinic structure is negligible. These features give rise to a eutectoid reaction at 1412 K. The topology of the computed phase diagram differs significantly from that suggested by Pejryd.
Resumo:
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.
Resumo:
Background The irreversible ErbB family blocker afatinib and the reversible EGFR tyrosine kinase inhibitor gefitinib are approved for first-line treatment of EGFR mutation-positive non-small-cell lung cancer (NSCLC). We aimed to compare the efficacy and safety of afatinib and gefitinib in this setting. Methods This multicentre, international, open-label, exploratory, randomised controlled phase 2B trial (LUX-Lung 7) was done at 64 centres in 13 countries. Treatment-naive patients with stage IIIB or IV NSCLC and a common EGFR mutation (exon 19 deletion or Leu858Arg) were randomly assigned (1:1) to receive afatinib (40 mg per day) or gefitinib (250 mg per day) until disease progression, or beyond if deemed beneficial by the investigator. Randomisation, stratified by EGFR mutation type and status of brain metastases, was done centrally using a validated number generating system implemented via an interactive voice or web-based response system with a block size of four. Clinicians and patients were not masked to treatment allocation; independent review of tumour response was done in a blinded manner. Coprimary endpoints were progression-free survival by independent central review, time-to-treatment failure, and overall survival. Efficacy analyses were done in the intention-to-treat population and safety analyses were done in patients who received at least one dose of study drug. This ongoing study is registered with ClinicalTrials.gov, number NCT01466660. Findings Between Dec 13, 2011, and Aug 8, 2013, 319 patients were randomly assigned (160 to afatinib and 159 to gefitinib). Median follow-up was 27·3 months (IQR 15·3–33·9). Progression-free survival (median 11·0 months [95% CI 10·6–12·9] with afatinib vs 10·9 months [9·1–11·5] with gefitinib; hazard ratio [HR] 0·73 [95% CI 0·57–0·95], p=0·017) and time-to-treatment failure (median 13·7 months [95% CI 11·9–15·0] with afatinib vs 11·5 months [10·1–13·1] with gefitinib; HR 0·73 [95% CI 0·58–0·92], p=0·0073) were significantly longer with afatinib than with gefitinib. Overall survival data are not mature. The most common treatment-related grade 3 or 4 adverse events were diarrhoea (20 [13%] of 160 patients given afatinib vs two [1%] of 159 given gefitinib) and rash or acne (15 [9%] patients given afatinib vs five [3%] of those given gefitinib) and liver enzyme elevations (no patients given afatinib vs 14 [9%] of those given gefitinib). Serious treatment-related adverse events occurred in 17 (11%) patients in the afatinib group and seven (4%) in the gefitinib group. Ten (6%) patients in each group discontinued treatment due to drug-related adverse events. 15 (9%) fatal adverse events occurred in the afatinib group and ten (6%) in the gefitinib group. All but one of these deaths were considered unrelated to treatment; one patient in the gefitinib group died from drug-related hepatic and renal failure. Interpretation Afatinib significantly improved outcomes in treatment-naive patients with EGFR-mutated NSCLC compared with gefitinib, with a manageable tolerability profile. These data are potentially important for clinical decision making in this patient population.
Resumo:
Background: This multicentre, open-label, randomized, controlled phase II study evaluated cilengitide in combination with cetuximab and platinum-based chemotherapy, compared with cetuximab and chemotherapy alone, as first-line treatment of patients with advanced non-small-cell lung cancer (NSCLC). Patients and methods: Patients were randomized 1:1:1 to receive cetuximab plus platinum-based chemotherapy alone (control), or combined with cilengitide 2000 mg 1×/week i.v. (CIL-once) or 2×/week i.v. (CIL-twice). A protocol amendment limited enrolment to patients with epidermal growth factor receptor (EGFR) histoscore ≥200 and closed the CIL-twice arm for practical feasibility issues. Primary end point was progression-free survival (PFS; independent read); secondary end points included overall survival (OS), safety, and biomarker analyses. A comparison between the CIL-once and control arms is reported, both for the total cohorts, as well as for patients with EGFR histoscore ≥200. Results: There were 85 patients in the CIL-once group and 84 in the control group. The PFS (independent read) was 6.2 versus 5.0 months for CIL-once versus control [hazard ratio (HR) 0.72; P = 0.085]; for patients with EGFR histoscore ≥200, PFS was 6.8 versus 5.6 months, respectively (HR 0.57; P = 0.0446). Median OS was 13.6 for CIL-once versus 9.7 months for control (HR 0.81; P = 0.265). In patients with EGFR ≥200, OS was 13.2 versus 11.8 months, respectively (HR 0.95; P = 0.855). No major differences in adverse events between CIL-once and control were reported; nausea (59% versus 56%, respectively) and neutropenia (54% versus 46%, respectively) were the most frequent. There was no increased incidence of thromboembolic events or haemorrhage in cilengitide-treated patients. αvβ3 and αvβ5 expression was neither a predictive nor a prognostic indicator. Conclusions: The addition of cilengitide to cetuximab/chemotherapy indicated potential clinical activity, with a trend for PFS difference in the independent-read analysis. However, the observed inconsistencies across end points suggest additional investigations are required to substantiate a potential role of other integrin inhibitors in NSCLC treatment.
Resumo:
Background We aimed to assess the effect of afatinib on overall survival of patients with EGFR mutation-positive lung adenocarcinoma through an analysis of data from two open-label, randomised, phase 3 trials. Methods Previously untreated patients with EGFR mutation-positive stage IIIB or IV lung adenocarcinoma were enrolled in LUX-Lung 3 (n=345) and LUX-Lung 6 (n=364). These patients were randomly assigned in a 2:1 ratio to receive afatinib or chemotherapy (pemetrexed-cisplatin [LUX-Lung 3] or gemcitabine-cisplatin [LUX-Lung 6]), stratified by EGFR mutation (exon 19 deletion [del19], Leu858Arg, or other) and ethnic origin (LUX-Lung 3 only). We planned analyses of mature overall survival data in the intention-to-treat population after 209 (LUX-Lung 3) and 237 (LUX-Lung 6) deaths. These ongoing studies are registered with ClinicalTrials.gov, numbers NCT00949650 and NCT01121393. Findings Median follow-up in LUX-Lung 3 was 41 months (IQR 35–44); 213 (62%) of 345 patients had died. Median follow-up in LUX-Lung 6 was 33 months (IQR 31–37); 246 (68%) of 364 patients had died. In LUX-Lung 3, median overall survival was 28·2 months (95% CI 24·6–33·6) in the afatinib group and 28·2 months (20·7–33·2) in the pemetrexed-cisplatin group (HR 0·88, 95% CI 0·66–1·17, p=0·39). In LUX-Lung 6, median overall survival was 23·1 months (95% CI 20·4–27·3) in the afatinib group and 23·5 months (18·0–25·6) in the gemcitabine-cisplatin group (HR 0·93, 95% CI 0·72–1·22, p=0·61). However, in preplanned analyses, overall survival was significantly longer for patients with del19-positive tumours in the afatinib group than in the chemotherapy group in both trials: in LUX-Lung 3, median overall survival was 33·3 months (95% CI 26·8–41·5) in the afatinib group versus 21·1 months (16·3–30·7) in the chemotherapy group (HR 0·54, 95% CI 0·36–0·79, p=0·0015); in LUX-Lung 6, it was 31·4 months (95% CI 24·2–35·3) versus 18·4 months (14·6–25·6), respectively (HR 0·64, 95% CI 0·44–0·94, p=0·023). By contrast, there were no significant differences by treatment group for patients with EGFR Leu858Arg-positive tumours in either trial: in LUX-Lung 3, median overall survival was 27·6 months (19·8–41·7) in the afatinib group versus 40·3 months (24·3–not estimable) in the chemotherapy group (HR 1·30, 95% CI 0·80–2·11, p=0·29); in LUX-Lung 6, it was 19·6 months (95% CI 17·0–22·1) versus 24·3 months (19·0–27·0), respectively (HR 1·22, 95% CI 0·81–1·83, p=0·34). In both trials, the most common afatinib-related grade 3–4 adverse events were rash or acne (37 [16%] of 229 patients in LUX-Lung 3 and 35 [15%] of 239 patients in LUX-Lung 6), diarrhoea (33 [14%] and 13 [5%]), paronychia (26 [11%] in LUX-Lung 3 only), and stomatitis or mucositis (13 [5%] in LUX-Lung 6 only). In LUX-Lung 3, neutropenia (20 [18%] of 111 patients), fatigue (14 [13%]) and leucopenia (nine [8%]) were the most common chemotherapy-related grade 3–4 adverse events, while in LUX-Lung 6, the most common chemotherapy-related grade 3–4 adverse events were neutropenia (30 [27%] of 113 patients), vomiting (22 [19%]), and leucopenia (17 [15%]). Interpretation Although afatinib did not improve overall survival in the whole population of either trial, overall survival was improved with the drug for patients with del19 EGFR mutations. The absence of an effect in patients with Leu858Arg EGFR mutations suggests that EGFR del19-positive disease might be distinct from Leu858Arg-positive disease and that these subgroups should be analysed separately in future trials.
Resumo:
Lipids are amphiphilic molecules that are composed of hydrophilic and hydrophobic regions. A typical membranous aggregate (vesicles, water-filled lipid nanospheres) is formed upon the self-organization of lipids in water from a diverse collection of amphiphiles producing a dynamic supramolecular structure that shows phase behavior and ordering as required for specific biological functions. The determination of various physical properties of lipid aggregates is the key to determining structure-function relationships. Over the years, we have designed and synthesized a wide variety of lipid molecular systems for the investigation of their membrane-forming properties and have used them for purposes such as gene delivery and enzyme activation. In this feature article, we focus on our work on various types of lipids including ion-paired amphiphiles, cholesterol-based lipids, aromatic lipids, macrocyclic lipids containing disulfide tethers; cationic dimeric lipids, and so forth. The emphasis is oil experimental design and bottom-line conclusions.
Resumo:
The tie-lines representing the inter-crystalline ion exchange equilibria between the NiCr2O4-NiAl2O4 spinet solid solution and Cr2O3-Al2O3 corundum solid solution are determined by electron microprobe andEDAX pointcountanalysis of the oxide phases equilibrated with metallic Ni at 1373 K. The component activities in the spinet solid solution are derived from the tie-lines and thermodynamic data for Cr2O3-Al2O3 solid solution available in the literature. The Gibbs energy of mixing of the spinet solid solution calculated from the experimental data is discussed in relation to the values derived from the cation distribution models which assume random mixing of cations on both tetrahedral and octahedral sites. Positive deviation from the models is observed indicating significant positive enthalpy contribution arising form the size mismatch between Al+3 and Ni+2 ions on the tetrahedral site and Al+3, Ni+2 and Cr+3 on the octahedral site. Variation of the oxygen potential for threephase equilibrium involving metallic nickel, spinet solid solution and corundum solid solution is computed as a function of composition of the solid solutions at 1373 K. The oxygen potential exhibits a minimum at aluminum cationic fraction eta(Al)/(eta(Al) + eta(Cr)) = 0.524 in the oxide solid solutions.
Resumo:
The microstructural evolution of concentrated alloys is relatively less understood both in terms of experiments as well as theory. Laser resolidification represents a powerful technique to study the solidification behavior under controlled growth conditions. This technique has been utilized in the current study to probe experimentally microstructural selection during rapid solidification of concentrated Fe-25 atom pct Ge alloy. Under the equilibrium solidification condition, the alloy undergoes a peritectic reaction between ordered alpha(2) (B2) and its liquid, leading to the formation of ordered hexagonal intermetallic phase epsilon (DO19). In general, the as-cast microstructure consists of epsilon phase and e-p eutectic and alpha(2) that forms as a result of an incomplete peritectic reaction. With increasing laser scanning velocity, the solidification front undergoes a number of morphological transitions leading to the selection of the microstructure corresponding to metastable alpha(2)/beta eutectic to alpha(2) dendrite + alpha(2)/beta eutectic to alpha(2) dendrite. The transition velocities as obtained from the experiments are well characterized. The microstructural selection is discussed using competitive growth kinetics.
Resumo:
Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.
Resumo:
A novel stress induced martenistic phase transformation is reported in an initial B2-CuZr nanowire of cross-sectional dimensions in the range of 19.44 x 19.44-38.88 x 38.88 angstrom(2) and temperature in the range of 10-400 K under both tensile and compressive loading. Extensive Molecular Dynamic simulations are performed using an inter-atomic potential of type Finnis and Sinclair. The nanowire shows a phase transformation from an initial B2 phase to BCT (body-centered-tetragonal) phase with failure strain of similar to 40% in tension, whereas in compression, comparatively a small B2 -> BCT phase transformation is observed with failure strain of similar to 25%. Size and temperature dependent deformation mechanisms which control ultimately the B2 -> BCT phase transformation are found to be completely different for tensile and compressive loadings. Under tensile loading, small cross-sectional nanowire shows a single step phase transformation, i.e. B2 -> BCT via twinning along {100} plane, whereas nanowires with larger cross-sectional area show a two step phase transformation, i.e. B2 -> R phase -> BCT along with intermediate hardening. In the first step, nanowire shows phase transformation from B2 -> R phase via twinning along {100} plane, afterwards the nanowire deforms via twinning along {110} plane which cause further transformation from R phase -> BCT phase. Under compressive loading, the nanowire shows crushing along {100} plane after a single step phase transformation from B2 -> BCT. Proper tailoring of such size and temperature dependent phase transformation can be useful in designing nanowire for high strength applications with corrosion and fatigue resistance. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The transesterification of methyl butyrate, ethyl butyrate and butyl butyrate to geranyl butyrate was investigated in supercritical carbon dioxide. The effect of chain length of the butyrate on the rate of transesterification was investigated. The initial rates followed the trend: ethyl butyrate < butyl butyrate < methyl butyrate. The transesterification of butyl butyrate to geranyl butyrate in various supercritical fluids such as ethylene, methane, ethane was also examined. The initial rate of transesterification of butyl butyrate in different supercritical fluids followed the order: ScCO2 < ScC2H6 < ScC2H4 < ScCH4. The highest initial rate was obtained in supercritical methane and the reasons for this observation were proposed. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the reaction. (C) 2010 Elsevier B.V. All rights reserved.