991 resultados para Nuclear fuel
Resumo:
The controllable synthesis of nanosized carbon-supported Pd catalysts through a surface replacement reaction (SRR) method is reported in this paper. Depending on the synthesis conditions the Pd can be formed on Co nanoparticles surface in hollow nanospheres or nanoparticles structures. Citrate anion acts as a stabilizer for the nanostructures, and protonation of the third carboxyl anion and hence the nanostructure and size of the resulting catalysts are controlled via the pH of the synthesis solution. Pd hollow nanospheres, containing smaller Pd nanoparticles, supported on carbon are formed under the condition of pH 9 reaction solution. Meanwhile, highly dispersed carbon-supported Pd nanoparticles can be formed with higher pH (pH >= 10). All catalysts prepared through the SRR method show enhanced activities for the HCOOH electro-oxidation reaction compared to catalysts reduced by NaBH4.
Resumo:
Two multi-nuclear titanium complexes [Ti(eta(5)-Cp-*) Cl(mu-O)](3) ( 1) and [(eta(5)-(CpTiCl)-Ti-*)(mu-O)(2)(eta(5)-(CpTi)-Ti-*)(2)(mu-O)(mu-O)(2)](2)Ti (Cp-* = C5Me5) ( 2) have been investigated as the precatalysts for syndiospecific polymerization of styrene. In the presence of modified methylaluminoxane ( MMAO) as a cocatalyst, complexes 1 and 2 display much higher catalytic activities towards styrene polymerization, and produce the higher molecular weight polystyrenes with higher syndiotacticities and melting temperatures ( T-m) than the mother complex (CpTiCl3)-Ti-* does when the polymerization temperature is above 70 degrees C and the Al/Ti molar ratio is in the low range especially.
Resumo:
A novel sulfonated diamine monomer, 2,2'-bis(p-aminophenoxy)-1,1'-binaphthyl-6,6'-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30-80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945-0.161 S/cm) at 20-80 degrees C in liquid water. The membranes exhibited methanol permeability from 9 x 10(-8) to 5 X 10(-7) cm(2)/s at 20 degrees C, which was much lower than that of Nafion (2 x 10(-6) cm(2)/s). The copolymers were thermally stable up to 300 degrees C. The sulfonated polyimide copolymers with 30-60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability.
Resumo:
In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.
Resumo:
A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.
Resumo:
A new flow field was designed to search flow fields fitting polymer electrolyte membrane fuel cells (PEMFCs) better due its extensible. There are many independent inlets and outlets in the new flow field. The new flow field we named NINO can extend to be more general when pressures at the inlet and outlet vary and some usual flow fields will be obtained. A new mathematical model whose view angle is obverse is used to describe the flow field.
Resumo:
In this paper, it is reported for the first time that a carbon-supported Pd-P (Pd-P/C) catalyst for the anodic catalyst in the direct formic acid fuel cell (DFAFC) can be prepared. The Pd-P/C catalyst shows that its electrocatalytic activity and especially its stability for the oxidation of formic acid are much higher than that of a Pd/C catalyst. Therefore, the Pd-P/C catalyst may have practical applications in DFAFCs.
Resumo:
Polypyrrole (Ppy) was successfully introduced into methyl substituted sulfonated poly(ether ether ketone) (SPEEK) membranes by polymerization in SPEEK solutions to improve their methanol resistance. Uniform polypyrrole (Ppy) distributed composite membranes were formed by this method by the interaction between SPEEK and Ppy. The properties of the composite membranes were characterized in detail. The composite membranes show very good proton conductive capability (25 degrees C: 0.05-0.06s cm(-1)) and good methanol resistance (25 degrees C: 5.3 x 10(-7) 1.1 x 10(-6) cm(2) s(-1)). The methanol diffusion coefficients of composite membranes are much lower than that of pure SPEEK membranes (1.5 x 10(-6) cm(2) s(-1)). The composite membranes show very good potential usage in direct methanol fuel cells (DMFCs).
Resumo:
An additional anode catalyst layer with PtRu/C was hot pressed between two Nafion (R) 112 membranes and a conventional direct methanol fuel cell (DMFC) cathode/membrane/anode assembly with the above membranes as separator was fabricated. The additional catalyst layer formed an assistant cell with the cathode to prevent methanol crossover. A simple one-dimensional mathematical model was presented to describe the performance of this new type of membrane electrode assembly system. As seen from both experimental result and model analysis, the additional catalyst layer can not only effectively prevent the methanol crossover, but also generate electrical power with the crossover methanol. The percentage of output power of the assistant cell to the total power analyzed by the model is about 40% under usual condition, which is much higher than that from experimental result, indicating the potential of the development in the DMFC designing. It was also discovered that the electrical power generated from the assistant cell with crossover methanol could take higher percentage in total electrical power when the main DMFC current density became lower.
Resumo:
A series of solid electrolytes, (Ce(0.8)Ln(0.2))(1 - x)MxO2 - delta(Ln = La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 degreesC. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)(1 - 0.05)Ca0.05O2 - delta as electrolyte are 0.86 V and 33 mW . cm(-2), respectively.
Resumo:
The Pt/C catalysts were prepared with pine active carbon and Vulcan XC-72 active carbon as the supports. The performances of the Pt/C catalysts in polymer electrolyte membrane fuel cell were compared. The result indicates that the performance of Pt/Vulcan XC-72 is better than that of Pt/pine. The physical and chemical properties of the two active carbons were measured using several analysis techniques. It was found that the pore size, specific conductivity and the surface function group significantly influence the performance of the electrocatalyst.
Resumo:
The high-field nuclear magnetic resonance (NMR) spectra can be used for the rapid multicomponent analysis in small amounts of biological fluids. In this paper, the effect of La (NO3)(3) on the rats' metabolism in urine was investigated by H-1 NMR analysis. The experimental groups of wistar rats were injected intraperitoneally with La(NO3)(3) at doses of 0.2, 2.0, 10 and 20mg/kg body weight. The remarkable variation of low molecular weight metabolites in urine has been identified by H-1 NMR spectra, in which dimethylamine, N, N-dimethylglycine, urea, alpha -ketoglutarate, trimethylamine N-oxide, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. This work may assess its possible use in the early detection of biochemical changes associated with Rare Earth induced kidney and liver dysfunction.
Resumo:
Artificial neural network (ANN) and multiple linear regression (MLR) were used for the simulation of C-13 NMR chemical shifts of 118 central carbon atoms in 18 pyridines and quinolines. The electronic and geometric features were calculated to describe the environments of the central carbon atom. The results provided by ANN method were better than that achieved by MLR.
Resumo:
In this paper, the water relaxation enhancement behavior of Gd-diethylenetriamine pentaacetic acid(DTPA) in water and in aqueous solution of bovine serum albumine(BSA) has been studied. The T-1 relaxivity of Gd-DTPA in BSA solution is higher than that in aqueous solution. The results indicate that Gd-DTPA can integrate non-covalently with BSA mainly in forms of (Gd-DTPA) . BSA, (Gd-DTPA)(2) . BSA, for which the apparent equilibrium constant is 0.026 mmol(-1).L,0.0018 mmol(-2).L-2 respectively. This method would be used to study the interactivities between protein and contrast agent.