971 resultados para Non-gaussian statistical mechanics
Resumo:
While non-Boussinesq hexagonal convection patterns are known to be stable close to threshold (i.e. for Rayleigh numbers R ? Rc ), it has often been assumed that they are always unstable to rolls for slightly higher Rayleigh numbers. Using the incompressible Navier?Stokes equations for parameters corresponding to water as the working fluid, we perform full numerical stability analyses of hexagons in the strongly nonlinear regime ( ? (R ? Rc )/Rc = O(1)). We find ?re-entrant? behaviour of the hexagons, i.e. as is increased they can lose and regain stability. This can occur for values of as low as = 0.2. We identify two factors contributing to the re-entrance: (i) far above threshold there exists a hexagon attractor even in Boussinesq convection as has been shown recently and (ii) the non-Boussinesq effects increase with . Using direct simulations for circular containers we show that the re-entrant hexagons can prevail even for sidewall conditions that favour convection in the form of competing stable rolls. For sufficiently strong non-Boussinesq effects hexagons even become stable over the whole -range considered, 0 6 6 1.5.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
La Universidad Politécnica de Madrid (UPM) y la Università degli Studi di Firenze (UniFi), bajo la coordinación técnica de AMPHOS21, participan desde 2009 en el proyecto de investigación “Estrategias de Monitorización de CO2 y otros gases en el estudio de Análogos Naturales”, financiado por la Fundación Ciudad de la Energía (CIUDEN) en el marco del Proyecto Compostilla OXYCFB300 (http://www.compostillaproject.eu), del Programa “European Energy Program for Recovery - EEPR”. El objetivo principal del proyecto fue el desarrollo y puesta a punto de metodologías de monitorización superficiales para su aplicación en el seguimiento y control de los emplazamientos donde se realice el almacenamiento geológico de CO2, analizando técnicas que permitan detectar y cuantificar las posibles fugas de CO2 a la atmósfera. Los trabajos se realizaron tanto en análogos naturales (españoles e italianos) como en la Planta de Desarrollo Tecnológico de Almacenamiento de CO2 de Hontomín. Las técnicas analizadas se centran en la medición de gases y aguas superficiales (de escorrentía y manantiales). En cuanto a la medición de gases se analizó el flujo de CO2 que emana desde el suelo a la atmósfera y la aplicabilidad de trazadores naturales (como el radón) para la detección e identificación de las fugas de CO2. En cuanto al análisis químico de las aguas se analizaron los datos geoquímicos e isotópicos y los gases disueltos en las aguas de los alrededores de la PDT de Hontomín, con objeto de determinar qué parámetros son los más apropiados para la detección de una posible migración del CO2 inyectado, o de la salmuera, a los ambientes superficiales. Las medidas de flujo de CO2 se realizaron con la técnica de la cámara de acúmulo. A pesar de ser una técnica desarrollada y aplicada en diferentes ámbitos científicos se estimó necesario adaptar un protocolo de medida y de análisis de datos a las características específicas de los proyectos de captura y almacenamiento de CO2 (CAC). Donde los flujos de CO2 esperados son bajos y en caso de producirse una fuga habrá que detectar pequeñas variaciones en los valores flujo con un “ruido” en la señal alto, debido a actividad biológica en el suelo. La medida de flujo de CO2 mediante la técnica de la cámara de acúmulo se puede realizar sin limpiar la superficie donde se coloca la cámara o limpiando y esperando al reequilibrio del flujo después de la distorsión al sistema. Sin embargo, los resultados obtenidos después de limpiar y esperar muestran menor dispersión, lo que nos indica que este procedimiento es el mejor para la monitorización de los complejos de almacenamiento geológico de CO2. El protocolo de medida resultante, utilizado para la obtención de la línea base de flujo de CO2 en Hontomín, sigue los siguiente pasos: a) con una espátula se prepara el punto de medición limpiando y retirando el recubrimiento vegetal o la primera capa compacta de suelo, b) se espera un tiempo para la realización de la medida de flujo, facilitando el reequilibrio del flujo del gas tras la alteración provocada en el suelo y c) se realiza la medida de flujo de CO2. Una vez realizada la medición de flujo de CO2, y detectada si existen zonas de anomalías, se debe estimar la cantidad de CO2 que se está escapando a la atmósfera (emanación total), con el objetivo de cuantificar la posible fuga. Existen un amplio rango de metodologías para realizar dicha estimación, siendo necesario entender cuáles son las más apropiadas para obtener el valor más representativo del sistema. En esta tesis se comparan seis técnicas estadísticas: media aritmética, estimador insegado de la media (aplicando la función de Sichel), remuestreo con reemplazamiento (bootstrap), separación en diferentes poblaciones mediante métodos gráficos y métodos basados en criterios de máxima verosimilitud, y la simulación Gaussiana secuencial. Para este análisis se realizaron ocho campañas de muestreo, tanto en la Planta de Desarrollo Tecnológico de Hontomón como en análogos naturales (italianos y españoles). Los resultados muestran que la simulación Gaussiana secuencial suele ser el método más preciso para realizar el cálculo, sin embargo, existen ocasiones donde otros métodos son más apropiados. Como consecuencia, se desarrolla un procedimiento de actuación para seleccionar el método que proporcione el mejor estimador. Este procedimiento consiste, en primer lugar, en realizar un análisis variográfico. Si existe una autocorrelación entre los datos, modelizada mediante el variograma, la mejor técnica para calcular la emanación total y su intervalo de confianza es la simulación Gaussiana secuencial (sGs). Si los datos son independientes se debe comprobar la distribución muestral, aplicando la media aritmética o el estimador insesgado de la media (Sichel) para datos normales o lognormales respectivamente. Cuando los datos no son normales o corresponden a una mezcla de poblaciones la mejor técnica de estimación es la de remuestreo con reemplazamiento (bootstrap). Siguiendo este procedimiento el máximo valor del intervalo de confianza estuvo en el orden del ±20/25%, con la mayoría de valores comprendidos entre ±3,5% y ±8%. La identificación de las diferentes poblaciones muestrales en los datos de flujo de CO2 puede ayudar a interpretar los resultados obtenidos, toda vez que esta distribución se ve afectada por la presencia de varios procesos geoquímicos como, por ejemplo, una fuente geológica o biológica del CO2. Así pues, este análisis puede ser una herramienta útil en el programa de monitorización, donde el principal objetivo es demostrar que no hay fugas desde el reservorio a la atmósfera y, si ocurren, detectarlas y cuantificarlas. Los resultados obtenidos muestran que el mejor proceso para realizar la separación de poblaciones está basado en criterios de máxima verosimilitud. Los procedimientos gráficos, aunque existen pautas para realizarlos, tienen un cierto grado de subjetividad en la interpretación de manera que los resultados son menos reproducibles. Durante el desarrollo de la tesis se analizó, en análogos naturales, la relación existente entre el CO2 y los isótopos del radón (222Rn y 220Rn), detectándose en todas las zonas de emisión de CO2 una relación positiva entre los valores de concentración de 222Rn en aire del suelo y el flujo de CO2. Comparando la concentración de 220Rn con el flujo de CO2 la relación no es tan clara, mientras que en algunos casos aumenta en otros se detecta una disminución, hecho que parece estar relacionado con la profundidad de origen del radón. Estos resultados confirmarían la posible aplicación de los isótopos del radón como trazadores del origen de los gases y su aplicación en la detección de fugas. Con respecto a la determinación de la línea base de flujo CO2 en la PDT de Hontomín, se realizaron mediciones con la cámara de acúmulo en las proximidades de los sondeos petrolíferos, perforados en los ochenta y denominados H-1, H-2, H-3 y H-4, en la zona donde se instalarán el sondeo de inyección (H-I) y el de monitorización (H-A) y en las proximidades de la falla sur. Desde noviembre de 2009 a abril de 2011 se realizaron siete campañas de muestreo, adquiriéndose más de 4.000 registros de flujo de CO2 con los que se determinó la línea base y su variación estacional. Los valores obtenidos fueron bajos (valores medios entre 5 y 13 g•m-2•d-1), detectándose pocos valores anómalos, principalmente en las proximidades del sondeo H-2. Sin embargo, estos valores no se pudieron asociar a una fuente profunda del CO2 y seguramente estuvieran más relacionados con procesos biológicos, como la respiración del suelo. No se detectaron valores anómalos cerca del sistema de fracturación (falla Ubierna), toda vez que en esta zona los valores de flujo son tan bajos como en el resto de puntos de muestreo. En este sentido, los valores de flujo de CO2 aparentemente están controlados por la actividad biológica, corroborado al obtenerse los menores valores durante los meses de otoño-invierno e ir aumentando en los periodos cálidos. Se calcularon dos grupos de valores de referencia, el primer grupo (UCL50) es 5 g•m-2•d-1 en las zonas no aradas en los meses de otoño-invierno y 3,5 y 12 g•m-2•d-1 en primavera-verano para zonas aradas y no aradas, respectivamente. El segundo grupo (UCL99) corresponde a 26 g•m-2•d- 1 durante los meses de otoño-invierno en las zonas no aradas y 34 y 42 g•m-2•d-1 para los meses de primavera-verano en zonas aradas y no aradas, respectivamente. Flujos mayores a estos valores de referencia podrían ser indicativos de una posible fuga durante la inyección y posterior a la misma. Los primeros datos geoquímicos e isotópicos de las aguas superficiales (de escorrentía y de manantiales) en el área de Hontomín–Huermeces fueron analizados. Los datos sugieren que las aguas estudiadas están relacionadas con aguas meteóricas con un circuito hidrogeológico superficial, caracterizadas por valores de TDS relativamente bajos (menor a 800 mg/L) y una fácie hidrogeoquímica de Ca2+(Mg2+)-HCO3 −. Algunas aguas de manantiales se caracterizan por concentraciones elevadas de NO3 − (concentraciones de hasta 123 mg/l), lo que sugiere una contaminación antropogénica. Se obtuvieron concentraciones anómalas de of Cl−, SO4 2−, As, B y Ba en dos manantiales cercanos a los sondeos petrolíferos y en el rio Ubierna, estos componentes son probablemente indicadores de una posible mezcla entre los acuíferos profundos y superficiales. El estudio de los gases disueltos en las aguas también evidencia el circuito superficial de las aguas. Estando, por lo general, dominado por la componente atmosférica (N2, O2 y Ar). Sin embargo, en algunos casos el gas predominante fue el CO2 (con concentraciones que llegan al 63% v/v), aunque los valores isotópicos del carbono (<-17,7 ‰) muestran que lo más probable es que esté relacionado con un origen biológico. Los datos geoquímicos e isotópicos de las aguas superficiales obtenidos en la zona de Hontomín se pueden considerar como el valor de fondo con el que comparar durante la fase operacional, la clausura y posterior a la clausura. En este sentido, la composición de los elementos mayoritarios y traza, la composición isotópica del carbono del CO2 disuelto y del TDIC (Carbono inorgánico disuelto) y algunos elementos traza se pueden considerar como parámetros adecuados para detectar la migración del CO2 a los ambientes superficiales. ABSTRACT Since 2009, a group made up of Universidad Politécnica de Madrid (UPM; Spain) and Università degli Studi Firenze (UniFi; Italy) has been taking part in a joint project called “Strategies for Monitoring CO2 and other Gases in Natural analogues”. The group was coordinated by AMPHOS XXI, a private company established in Barcelona. The Project was financially supported by Fundación Ciudad de la Energía (CIUDEN; Spain) as a part of the EC-funded OXYCFB300 project (European Energy Program for Recovery -EEPR-; www.compostillaproject.eu). The main objectives of the project were aimed to develop and optimize analytical methodologies to be applied at the surface to Monitor and Verify the feasibility of geologically stored carbon dioxide. These techniques were oriented to detect and quantify possible CO2 leakages to the atmosphere. Several investigations were made in natural analogues from Spain and Italy and in the Tecnchnological Development Plant for CO2 injection al Hontomín (Burgos, Spain). The studying techniques were mainly focused on the measurements of diffuse soil gases and surface and shallow waters. The soil-gas measurements included the determination of CO2 flux and the application to natural trace gases (e.g. radon) that may help to detect any CO2 leakage. As far as the water chemistry is concerned, geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of the PDT of Hontomín were analyzed to determine the most suitable parameters to trace the migration of the injected CO2 into the near-surface environments. The accumulation chamber method was used to measure the diffuse emission of CO2 at the soil-atmosphere interface. Although this technique has widely been applied in different scientific areas, it was considered of the utmost importance to adapt the optimum methodology for measuring the CO2 soil flux and estimating the total CO2 output to the specific features of the site where CO2 is to be stored shortly. During the pre-injection phase CO2 fluxes are expected to be relatively low where in the intra- and post-injection phases, if leakages are to be occurring, small variation in CO2 flux might be detected when the CO2 “noise” is overcoming the biological activity of the soil (soil respiration). CO2 flux measurements by the accumulation chamber method could be performed without vegetation clearance or after vegetation clearance. However, the results obtained after clearance show less dispersion and this suggests that this procedure appears to be more suitable for monitoring CO2 Storage sites. The measurement protocol, applied for the determination of the CO2 flux baseline at Hontomín, has included the following steps: a) cleaning and removal of both the vegetal cover and top 2 cm of soil, b) waiting to reduce flux perturbation due to the soil removal and c) measuring the CO2 flux. Once completing the CO2 flux measurements and detected whether there were anomalies zones, the total CO2 output was estimated to quantify the amount of CO2 released to the atmosphere in each of the studied areas. There is a wide range of methodologies for the estimation of the CO2 output, which were applied to understand which one was the most representative. In this study six statistical methods are presented: arithmetic mean, minimum variances unbiased estimator, bootstrap resample, partitioning of data into different populations with a graphical and a maximum likelihood procedures, and sequential Gaussian simulation. Eight campaigns were carried out in the Hontomín CO2 Storage Technology Development Plant and in natural CO2 analogues. The results show that sequential Gaussian simulation is the most accurate method to estimate the total CO2 output and the confidential interval. Nevertheless, a variety of statistic methods were also used. As a consequence, an application procedure for selecting the most realistic method was developed. The first step to estimate the total emanation rate was the variogram analysis. If the relation among the data can be explained with the variogram, the best technique to calculate the total CO2 output and its confidence interval is the sequential Gaussian simulation method (sGs). If the data are independent, their distribution is to be analyzed. For normal and log-normal distribution the proper methods are the arithmetic mean and minimum variances unbiased estimator, respectively. If the data are not normal (log-normal) or are a mixture of different populations the best approach is the bootstrap resampling. According to these steps, the maximum confidence interval was about ±20/25%, with most of values between ±3.5% and ±8%. Partitioning of CO2 flux data into different populations may help to interpret the data as their distribution can be affected by different geochemical processes, e.g. geological or biological sources of CO2. Consequently, it may be an important tool in a monitoring CCS program, where the main goal is to demonstrate that there are not leakages from the reservoir to the atmosphere and, if occurring, to be able to detect and quantify it. Results show that the partitioning of populations is better performed by maximum likelihood criteria, since graphical procedures have a degree of subjectivity in the interpretation and results may not be reproducible. The relationship between CO2 flux and radon isotopes (222Rn and 220Rn) was studied in natural analogues. In all emissions zones, a positive relation between 222Rn and CO2 was observed. However, the relationship between activity of 220Rn and CO2 flux is not clear. In some cases the 220Rn activity indeed increased with the CO2 flux in other measurements a decrease was recognized. We can speculate that this effect was possibly related to the route (deep or shallow) of the radon source. These results may confirm the possible use of the radon isotopes as tracers for the gas origin and their application in the detection of leakages. With respect to the CO2 flux baseline at the TDP of Hontomín, soil flux measurements in the vicinity of oil boreholes, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber. Seven surveys were carried out from November 2009 to summer 2011. More than 4,000 measurements were used to determine the baseline flux of CO2 and its seasonal variations. The measured values were relatively low (from 5 to 13 g•m-2•day-1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g•m-2•d-1 for non-ploughed areas in autumn-winter seasons and 3.5 and 12 g•m-2•d-1 for in ploughed and non-ploughed areas, respectively, in spring-summer time, and UCL99 of 26 g•m-2•d-1 for autumn-winter in not-ploughed areas and 34 and 42 g•m-2•d-1 for spring-summer in ploughed and not-ploughed areas, respectively, were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project. The first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín–Huermeces (Burgos, Spain) are presented and discussed. The chemical and features of the spring waters suggest that they are related to a shallow hydrogeological system as the concentration of the Total Dissolved Solids approaches 800 mg/L with a Ca2+(Mg2+)-HCO3 − composition, similar to that of the surface waters. Some spring waters are characterized by relatively high concentrations of NO3 − (up to 123 mg/L), unequivocally suggesting an anthropogenic source. Anomalous concentrations of Cl−, SO4 2−, As, B and Ba were measured in two springs, discharging a few hundred meters from the oil wells, and in the Rio Ubierna. These contents are possibly indicative of mixing processes between deep and shallow aquifers. The chemistry of the dissolved gases also evidences the shallow circuits of the Hontomín– Huermeces, mainly characterized by an atmospheric source as highlighted by the contents of N2, O2, Ar and their relative ratios. Nevertheless, significant concentrations (up to 63% by vol.) of isotopically negative CO2 (<−17.7‰ V-PDB) were found in some water samples, likely related to a biogenic source. The geochemical and isotopic data of the surface and spring waters in the surroundings of Hontomín can be considered as background values when intra- and post-injection monitoring programs will be carried out. In this respect, main and minor solutes, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments.
Resumo:
It is widely known the anular-shaped beam divergence produced by the optical reorientation induced in nematics by a Gaussian beam. Recent works have found a new effect in colored liquid crystal (MBBA, Phase V,...) showing a similar spatial distribution. A new set of random-oscillating rings appears for light intensities over a certain threshold. The beam divergence due to that effect is greater than the molecular reorientation induced one.
Resumo:
The well-known Noether theorem in Lagrangian and Hamiltonian mechanics associates symmetries in the evolution equations of a mechanical system with conserved quantities. In this work, we extend this classical idea to problems of non-equilibrium thermodynamics formulated within the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) framework. The geometric meaning of symmetry is reviewed in this formal setting and then utilized to identify possible conserved quantities and the conditions that guarantee their strict conservation. Examples are provided that demonstrate the validity of the proposed definition in the context of finite and infinite dimensional thermoelastic problems.
Resumo:
In recent years, the technology for measuring the diameter and height of standing trees has improved significantly. These enhancements allow estimation of the volume of standing trees using stem taper equations, which traditionally have been constructed with data from felled trees, in an accurate and economically feasible way. A nondestructive method was evaluated with data from 38 pines and was validated with data from another 38 pines, both in the Northern Iberian Range (Spain). The electronic dendrometer Criterion RD1000 (Laser Technology Inc.) and the laser hypsometer TruPulse (Laser Technology Inc.) were used due to their accuracy and interoperability. The methodology was valid (unbiased and precise) measuring from a distance similar to the height of the tree. In this distance, statistical criteria and plots based on the residuals showed no clear advantage in volume estimation with models fitted with data from destructive methods against models fitted with data from the proposed non-destructive technique. This methodology can be considered useful for individual volume estimation and for developing taper equations.
Resumo:
A model for chloride transport in concrete is proposed. The model accounts for transport several transport mechanisms such as diffusion, advection, migration, etc. This work shows the chloride transport equations at the macroscopic scale in non-saturated concrete. The equations involve diffusion, migration, capillary suction, chloride combination and precipitation mechanisms. The material is assumed to be infinitely rigid, though the porosity can change under influence of chloride binding and precipitation. The involved microscopic and macroscopic properties of the materials are measured by standardized methods. The variables which must be imposed on the boundaries are temperature, relative humidity and chloride concentration. The output data of the model are the free, bound, precipitated and total chloride ion concentrations, as well as the pore solution content and the porosity. The proposed equations are solved by means of the finite element method (FEM) implemented in MATLAB (classical Galerkin formulation and the streamline upwind Petrov-Galerkin (SUPG) method to avoid spatial instabilities for advection dominated flows).
Resumo:
In this article, a novel method to generate an ultra-wideband (UWB) doublet using the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated. The main component of the submitted architecture is a SOA-Mach-Zehnder interferometer (MZI) pumped with a modulated Gaussian pulse. Maximum and minimum conversion points are analyzed through the systems transfer function in order to determinate the most effective operation stage. By tuning different values for the SOAs currents, it is possible to identify a conversion step in which the input pulse is enough large to saturate the SOAMZI, leading to the generation of a UWB doublet pulse.
Resumo:
Computing the modal parameters of large structures in Operational Modal Analysis often requires to process data from multiple non simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors that are fixed for all the measurements, while the other sensors are moved from one setup to the next. One possibility is to process the setups separately what result in different modal parameter estimates for each setup. Then the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global modes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a state space model that can be used to process all setups at once so the global mode shapes are obtained automatically and subsequently only a value for the natural frequency and damping ratio of each mode is computed. We also present how this model can be estimated using maximum likelihood and the Expectation Maximization algorithm. We apply this technique to real data measured at a footbridge.
Resumo:
This article presents a new material model developed with the aim of analyzing failure of blunt notched components made of nonlinear brittle materials. The model, which combines the cohesive crack model with Hencky's theory of total deformations, is used to simulate an experimental benchmark carried out previously by the authors. Such combination is achieved through the embedded crack approach concept. In spite of the unavailability of precise material data, the numerical predictions obtained show good agreement with the experimental results.
Resumo:
Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.
Resumo:
We develop general closed-form expressions for the mutual gravitational potential, resultant and torque acting upon a rigid tethered system moving in a non-uniform gravity field produced by an attracting body with revolution symmetry, such that an arbitrary number of zonal harmonics is considered. The final expressions are series expansion in two small parameters related to the reference radius of the primary and the length of the tether, respectively, each of which are scaled by the mutual distance between their centers of mass. A few numerical experiments are performed to study the convergence behavior of the final expressions, and conclude that for high precision applications it might be necessary to take into account additional perturbation terms, which come from the mutual Two-Body interaction.
Resumo:
El uso de aritmética de punto fijo es una opción de diseño muy extendida en sistemas con fuertes restricciones de área, consumo o rendimiento. Para producir implementaciones donde los costes se minimicen sin impactar negativamente en la precisión de los resultados debemos llevar a cabo una asignación cuidadosa de anchuras de palabra. Encontrar la combinación óptima de anchuras de palabra en coma fija para un sistema dado es un problema combinatorio NP-hard al que los diseñadores dedican entre el 25 y el 50 % del ciclo de diseño. Las plataformas hardware reconfigurables, como son las FPGAs, también se benefician de las ventajas que ofrece la aritmética de coma fija, ya que éstas compensan las frecuencias de reloj más bajas y el uso más ineficiente del hardware que hacen estas plataformas respecto a los ASICs. A medida que las FPGAs se popularizan para su uso en computación científica los diseños aumentan de tamaño y complejidad hasta llegar al punto en que no pueden ser manejados eficientemente por las técnicas actuales de modelado de señal y ruido de cuantificación y de optimización de anchura de palabra. En esta Tesis Doctoral exploramos distintos aspectos del problema de la cuantificación y presentamos nuevas metodologías para cada uno de ellos: Las técnicas basadas en extensiones de intervalos han permitido obtener modelos de propagación de señal y ruido de cuantificación muy precisos en sistemas con operaciones no lineales. Nosotros llevamos esta aproximación un paso más allá introduciendo elementos de Multi-Element Generalized Polynomial Chaos (ME-gPC) y combinándolos con una técnica moderna basada en Modified Affine Arithmetic (MAA) estadístico para así modelar sistemas que contienen estructuras de control de flujo. Nuestra metodología genera los distintos caminos de ejecución automáticamente, determina las regiones del dominio de entrada que ejercitarán cada uno de ellos y extrae los momentos estadísticos del sistema a partir de dichas soluciones parciales. Utilizamos esta técnica para estimar tanto el rango dinámico como el ruido de redondeo en sistemas con las ya mencionadas estructuras de control de flujo y mostramos la precisión de nuestra aproximación, que en determinados casos de uso con operadores no lineales llega a tener tan solo una desviación del 0.04% con respecto a los valores de referencia obtenidos mediante simulación. Un inconveniente conocido de las técnicas basadas en extensiones de intervalos es la explosión combinacional de términos a medida que el tamaño de los sistemas a estudiar crece, lo cual conlleva problemas de escalabilidad. Para afrontar este problema presen tamos una técnica de inyección de ruidos agrupados que hace grupos con las señales del sistema, introduce las fuentes de ruido para cada uno de los grupos por separado y finalmente combina los resultados de cada uno de ellos. De esta forma, el número de fuentes de ruido queda controlado en cada momento y, debido a ello, la explosión combinatoria se minimiza. También presentamos un algoritmo de particionado multi-vía destinado a minimizar la desviación de los resultados a causa de la pérdida de correlación entre términos de ruido con el objetivo de mantener los resultados tan precisos como sea posible. La presente Tesis Doctoral también aborda el desarrollo de metodologías de optimización de anchura de palabra basadas en simulaciones de Monte-Cario que se ejecuten en tiempos razonables. Para ello presentamos dos nuevas técnicas que exploran la reducción del tiempo de ejecución desde distintos ángulos: En primer lugar, el método interpolativo aplica un interpolador sencillo pero preciso para estimar la sensibilidad de cada señal, y que es usado después durante la etapa de optimización. En segundo lugar, el método incremental gira en torno al hecho de que, aunque es estrictamente necesario mantener un intervalo de confianza dado para los resultados finales de nuestra búsqueda, podemos emplear niveles de confianza más relajados, lo cual deriva en un menor número de pruebas por simulación, en las etapas iniciales de la búsqueda, cuando todavía estamos lejos de las soluciones optimizadas. Mediante estas dos aproximaciones demostramos que podemos acelerar el tiempo de ejecución de los algoritmos clásicos de búsqueda voraz en factores de hasta x240 para problemas de tamaño pequeño/mediano. Finalmente, este libro presenta HOPLITE, una infraestructura de cuantificación automatizada, flexible y modular que incluye la implementación de las técnicas anteriores y se proporciona de forma pública. Su objetivo es ofrecer a desabolladores e investigadores un entorno común para prototipar y verificar nuevas metodologías de cuantificación de forma sencilla. Describimos el flujo de trabajo, justificamos las decisiones de diseño tomadas, explicamos su API pública y hacemos una demostración paso a paso de su funcionamiento. Además mostramos, a través de un ejemplo sencillo, la forma en que conectar nuevas extensiones a la herramienta con las interfaces ya existentes para poder así expandir y mejorar las capacidades de HOPLITE. ABSTRACT Using fixed-point arithmetic is one of the most common design choices for systems where area, power or throughput are heavily constrained. In order to produce implementations where the cost is minimized without negatively impacting the accuracy of the results, a careful assignment of word-lengths is required. The problem of finding the optimal combination of fixed-point word-lengths for a given system is a combinatorial NP-hard problem to which developers devote between 25 and 50% of the design-cycle time. Reconfigurable hardware platforms such as FPGAs also benefit of the advantages of fixed-point arithmetic, as it compensates for the slower clock frequencies and less efficient area utilization of the hardware platform with respect to ASICs. As FPGAs become commonly used for scientific computation, designs constantly grow larger and more complex, up to the point where they cannot be handled efficiently by current signal and quantization noise modelling and word-length optimization methodologies. In this Ph.D. Thesis we explore different aspects of the quantization problem and we present new methodologies for each of them: The techniques based on extensions of intervals have allowed to obtain accurate models of the signal and quantization noise propagation in systems with non-linear operations. We take this approach a step further by introducing elements of MultiElement Generalized Polynomial Chaos (ME-gPC) and combining them with an stateof- the-art Statistical Modified Affine Arithmetic (MAA) based methodology in order to model systems that contain control-flow structures. Our methodology produces the different execution paths automatically, determines the regions of the input domain that will exercise them, and extracts the system statistical moments from the partial results. We use this technique to estimate both the dynamic range and the round-off noise in systems with the aforementioned control-flow structures. We show the good accuracy of our approach, which in some case studies with non-linear operators shows a 0.04 % deviation respect to the simulation-based reference values. A known drawback of the techniques based on extensions of intervals is the combinatorial explosion of terms as the size of the targeted systems grows, which leads to scalability problems. To address this issue we present a clustered noise injection technique that groups the signals in the system, introduces the noise terms in each group independently and then combines the results at the end. In this way, the number of noise sources in the system at a given time is controlled and, because of this, the combinato rial explosion is minimized. We also present a multi-way partitioning algorithm aimed at minimizing the deviation of the results due to the loss of correlation between noise terms, in order to keep the results as accurate as possible. This Ph.D. Thesis also covers the development of methodologies for word-length optimization based on Monte-Carlo simulations in reasonable times. We do so by presenting two novel techniques that explore the reduction of the execution times approaching the problem in two different ways: First, the interpolative method applies a simple but precise interpolator to estimate the sensitivity of each signal, which is later used to guide the optimization effort. Second, the incremental method revolves on the fact that, although we strictly need to guarantee a certain confidence level in the simulations for the final results of the optimization process, we can do it with more relaxed levels, which in turn implies using a considerably smaller amount of samples, in the initial stages of the process, when we are still far from the optimized solution. Through these two approaches we demonstrate that the execution time of classical greedy techniques can be accelerated by factors of up to ×240 for small/medium sized problems. Finally, this book introduces HOPLITE, an automated, flexible and modular framework for quantization that includes the implementation of the previous techniques and is provided for public access. The aim is to offer a common ground for developers and researches for prototyping and verifying new techniques for system modelling and word-length optimization easily. We describe its work flow, justifying the taken design decisions, explain its public API and we do a step-by-step demonstration of its execution. We also show, through an example, the way new extensions to the flow should be connected to the existing interfaces in order to expand and improve the capabilities of HOPLITE.
Resumo:
In this work, we explain the behavior of multijunction solar cells under non-uniform (spatially and in spectral content) light profiles in general and in particular when Gaussian light profiles cause a photo-generated current density, which exceeds locally the peak current density of the tunnel junction. We have analyzed the implications on the tunnel junction's limitation, that is, in the loss of efficiency due to the appearance of a dip in the I–V curve. For that, we have carried out simulations with our three-dimensional distributed model for multijunction solar cells, which contemplates a full description of the tunnel junction and also takes into account the lateral resistances in the tunnel junction. The main findings are that the current density photo-generated spreads out through the lateral resistances of the device, mainly through the tunnel junction layers and the back contact. Therefore, under non-uniform light profiles these resistances are determinant not only to avoid the tunnel junction's limitation but also for mitigating losses in the fill factor. Therefore, taking into account these lateral resistances could be the key for jointly optimizing the concentrator photovoltaic system (concentrator optics, front grid layout and semiconductor structure)