Fully adaptive gaussian mixture metropolis-hastings algorithm


Autoria(s): Luengo García, David; Martino, Luca
Data(s)

2013

Resumo

Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.

Formato

application/pdf

Identificador

http://oa.upm.es/33283/

Idioma(s)

eng

Publicador

E.U.I.T. Telecomunicación (UPM)

Relação

http://oa.upm.es/33283/1/INVE_MEM_2013_181097.pdf

https://www2.securecms.com/ICASSP2013/default.asp

info:eu-repo/semantics/altIdentifier/doi/null

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013) | 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP) | 26/05/2013 - 31/05/2013 | Vancouver (Canadá)

Palavras-Chave #Informática #Matemáticas
Tipo

info:eu-repo/semantics/conferenceObject

Ponencia en Congreso o Jornada

PeerReviewed