976 resultados para Monte-carlo Simulations
Resumo:
RESUMO: Este trabalho teve como objetivo a determinação de esquemas de tratamento alternativos para o carcinoma da próstata com radioterapia externa (EBRT) e braquiterapia de baixa taxa de dose (LDRBT) com implantes permanentes de Iodo-125, biologicamente equivalentes aos convencionalmente usados na prática clínica, com recurso a modelos teóricos e a métodos de Monte Carlo (MC). Os conceitos de dose biológica efetiva (BED) e de dose uniforme equivalente (EUD) foram utilizados, com o modelo linear-quadrático (LQ), para a determinação de regimes de tratamento equivalentes. Numa primeira abordagem, utilizou-se a BED para determinar: 1) esquemas hipofracionados de EBRT mantendo as complicações retais tardias de regimes convencionais com doses totais de 75,6 Gy, 77,4 Gy, 79,2 Gy e 81,0 Gy; e 2) a relação entre as doses totais de EBRT e LDRBT de modo a manter a BED do regime convencional de 45 Gy de EBRT e 110 Gy de LDRBT. Numa segunda abordagem, recorreu-se ao código de MC MCNPX para a simulação de distribuições de dose de EBRT e LDRBT em dois fantomas de voxel segmentados a partir das imagens de tomografia computorizada de pacientes com carcinoma da próstata. Os resultados das simulações de EBRT e LDRBT foram somados e determinada uma EUD total de forma a obterem-se: 1) esquemas equivalentes ao tratamento convencional de 25 frações de 1,8 Gy de EBRT em combinação com 110 Gy de LDRBT; e 2) esquemas equivalentes a EUD na próstata de 67 Gy, 72 Gy, 80 Gy, 90 Gy, 100 Gy e 110 Gy. Em todos os resultados nota-se um ganho terapêutico teórico na utilização de esquemas hipofracionados de EBRT. Para uma BED no reto equivalente ao esquema convencional, tem-se um aumento de 2% na BED da próstata com menos 5 frações. Este incremento dá-se de forma cada vez mais visível à medida que se reduz o número de frações, sendo da ordem dos 10-11% com menos 20 frações e dos 35-45% com menos 40 frações. Considerando os resultados das simulações de EBRT, obteve-se uma EUD média de 107 Gy para a próstata e de 42 Gy para o reto, com o esquema convencional de 110 Gy de LDRBT, seguidos de 25 frações de 1,8 Gy de EBRT. Em termos de probabilidade de controlo tumoral (igual EUD), é equivalente a este tratamento a administração de EBRT em 66 frações de 1,8 Gy, 56 de 2 Gy, 40 de 2,5 Gy, 31 de 3 Gy, 20 de 4 Gy ou 13 de 5 Gy. Relativamente à administração de 66 frações de 1,8 Gy, a EUD generalizada no reto reduz em 6% com o recurso a frações de 2,5 Gy e em 10% com frações de 4 Gy. Determinou-se uma BED total de 162 Gy para a administração de 25 frações de 1,8 Gy de EBRT em combinação com 110 Gy de LDRBT. Variando-se a dose total de LDRBT (TDLDRBT) em função da dose total de EBRT (TDEBRT), de modo a garantir uma BED de 162 Gy, obteve-se a seguinte relação:.......... Os resultados das simulações mostram que a EUD no reto diminui com o aumento da dose total de LDRBT para dose por fração de EBRT (dEBRT) inferiores a 2, Gy e aumenta para dEBRT a partir dos 3 Gy. Para quantidades de TDLDRBT mais baixas (<50 Gy), o reto beneficia de frações maiores de EBRT. À medida que se aumenta a TDLDRBT, a EUD generalizada no reto torna-se menos dependente da dEBRT. Este trabalho mostra que é possível a utilização de diferentes regimes de tratamento para o carcinoma da próstata com radioterapia que possibilitem um ganho terapêutico, quer seja administrando uma maior dose biológica com efeitos tardios constantes, quer mantendo a dose no tumor e diminuindo a toxicidade retal. A utilização com precaução de esquemas hipofracionados de EBRT, para além do benefício terapêutico, pode trazer vantagens ao nível da conveniência para o paciente e economia de custos. Os resultados das simulações deste estudo e conversão para doses de efeito biológico para o tratamento do carcinoma da próstata apresentam linhas de orientação teórica de interesse para novos ensaios clínicos. --------------------------------------------------ABSTRACT: The purpose of this work was to determine alternative radiotherapy regimens for the treatment of prostate cancer using external beam radiotherapy (EBRT) and low dose-rate brachytherapy (LDRBT) with Iodine-125 permanent implants which are biologically equivalent to conventional clinical treatments, by the use of theoretical models and Monte Carlo techniques. The concepts of biological effective dose (BED) and equivalent uniform dose (EUD), together with the linear-quadratic model (LQ), were used for determining equivalent treatment regimens. In a first approach, the BED concept was used to determine: 1) hypofractionated schemes of EBRT maintaining late rectal complications as with the conventional regimens with total doses of 75.6 Gy, 77.4 Gy, 79.2 Gy and 81.0 Gy; and 2) the relationship between total doses of EBRT and LDRBT in order to keep the BED of the conventional treatment of 45 Gy of EBRT and 110 Gy of LDRBT. In a second approach, the MC code MCNPX was used for simulating dose distributions of EBRT and LDRBT in two voxel phantoms segmented from the computed tomography of patients with prostate cancer. The results of the simulations of EBRT and LDRBT were added up and given an overall EUD in order to obtain: 1) equivalent to conventional treatment regimens of 25 fraction of 1.8 Gy of EBRT in combination with 110Gy of LDRBT; and 2) equivalent schemes of EUD of 67 Gy, 72 Gy, 80 Gy, 90 Gy, 100 Gy, and 110Gy to the prostate. In all the results it is noted a therapeutic gain using hypofractionated EBRT schemes. For a rectal BED equivalent to the conventional regimen, an increment of 2% in the prostate BED was achieved with less 5 fractions. This increase is visibly higher as the number of fractions decrease, amounting 10-11% with less 20 fractions and 35-45% with less 20 fractions. Considering the results of the EBRT simulations an average EUD of 107 Gy was achieved for the prostate and of 42 Gy for the rectum with the conventional scheme of 110 Gy of LDRBT followed by 25 fractions of 1.8 Gy of EBRT. In terms of tumor control probability (same EUD) it is equivalent to this treatment, for example, delivering the EBRT in 66 fractions of 1.8 Gy, 56 fractions of 2 Gy, 40 fractions of 2.5 Gy, 31 fractions of 3 Gy, 20 fractions of 4 Gy or 13 fractions of 5 Gy. Regarding the use of 66 fractions of 1.8 Gy, the rectum EUD is reduced to 6% with 2.5 Gy per fraction and to 10% with 4 Gy. A total BED of 162 Gy was achieved for the delivery of 25 fractions of 1.8 Gy of EBRT in combination with 110 Gy of LDRBT. By varying the total dose of LDRBT (TDLDRBT) with the total dose of EBRT (TDEBRT) so as to ensure a BED of 162 Gy, the following relationship was obtained: ....... The simulation results show that the rectum EUD decreases with the increase of the TDLDRBT, for EBRT dose per fracion (dEBRT) less than 2.5 Gy and increases for dEBRT above 3 Gy. For lower amounts of TDLDRBT (< 50Gy), the rectum benefits of larger EBRT fractions. As the TDLDRBT increases, the rectum gEUD becomes less dependent on the dEBRT. The use of different regimens which enable a therapeutic gain, whether deivering a higher dose with the same late biological effects or maintaining the dose to the tumor and reducing rectal toxicity is possible. The use with precaution of hypofractionated regimens, in addition to the therapeutic benefit, can bring advantages in terms of convenience for the patient and cost savings. The simulation results of this study together with the biological dose conversion for the treatment of prostate cancer serve as guidelines of interest for new clinical trials.
Resumo:
Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
Cette thèse s'intéresse à étudier les propriétés extrémales de certains modèles de risque d'intérêt dans diverses applications de l'assurance, de la finance et des statistiques. Cette thèse se développe selon deux axes principaux, à savoir: Dans la première partie, nous nous concentrons sur deux modèles de risques univariés, c'est-à- dire, un modèle de risque de déflation et un modèle de risque de réassurance. Nous étudions le développement des queues de distribution sous certaines conditions des risques commun¬s. Les principaux résultats sont ainsi illustrés par des exemples typiques et des simulations numériques. Enfin, les résultats sont appliqués aux domaines des assurances, par exemple, les approximations de Value-at-Risk, d'espérance conditionnelle unilatérale etc. La deuxième partie de cette thèse est consacrée à trois modèles à deux variables: Le premier modèle concerne la censure à deux variables des événements extrême. Pour ce modèle, nous proposons tout d'abord une classe d'estimateurs pour les coefficients de dépendance et la probabilité des queues de distributions. Ces estimateurs sont flexibles en raison d'un paramètre de réglage. Leurs distributions asymptotiques sont obtenues sous certaines condi¬tions lentes bivariées de second ordre. Ensuite, nous donnons quelques exemples et présentons une petite étude de simulations de Monte Carlo, suivie par une application sur un ensemble de données réelles d'assurance. L'objectif de notre deuxième modèle de risque à deux variables est l'étude de coefficients de dépendance des queues de distributions obliques et asymétriques à deux variables. Ces distri¬butions obliques et asymétriques sont largement utiles dans les applications statistiques. Elles sont générées principalement par le mélange moyenne-variance de lois normales et le mélange de lois normales asymétriques d'échelles, qui distinguent la structure de dépendance de queue comme indiqué par nos principaux résultats. Le troisième modèle de risque à deux variables concerne le rapprochement des maxima de séries triangulaires elliptiques obliques. Les résultats théoriques sont fondés sur certaines hypothèses concernant le périmètre aléatoire sous-jacent des queues de distributions. -- This thesis aims to investigate the extremal properties of certain risk models of interest in vari¬ous applications from insurance, finance and statistics. This thesis develops along two principal lines, namely: In the first part, we focus on two univariate risk models, i.e., deflated risk and reinsurance risk models. Therein we investigate their tail expansions under certain tail conditions of the common risks. Our main results are illustrated by some typical examples and numerical simu¬lations as well. Finally, the findings are formulated into some applications in insurance fields, for instance, the approximations of Value-at-Risk, conditional tail expectations etc. The second part of this thesis is devoted to the following three bivariate models: The first model is concerned with bivariate censoring of extreme events. For this model, we first propose a class of estimators for both tail dependence coefficient and tail probability. These estimators are flexible due to a tuning parameter and their asymptotic distributions are obtained under some second order bivariate slowly varying conditions of the model. Then, we give some examples and present a small Monte Carlo simulation study followed by an application on a real-data set from insurance. The objective of our second bivariate risk model is the investigation of tail dependence coefficient of bivariate skew slash distributions. Such skew slash distributions are extensively useful in statistical applications and they are generated mainly by normal mean-variance mixture and scaled skew-normal mixture, which distinguish the tail dependence structure as shown by our principle results. The third bivariate risk model is concerned with the approximation of the component-wise maxima of skew elliptical triangular arrays. The theoretical results are based on certain tail assumptions on the underlying random radius.
Resumo:
Understanding why dispersal is sex-biased in many taxa is still a major concern in evolutionary ecology. Dispersal tends to be male-biased in mammals and female-biased in birds, but counter-examples exist and little is known about sex bias in other taxa. Obtaining accurate measures of dispersal in the field remains a problem. Here we describe and compare several methods for detecting sex-biased dispersal using bi-parentally inherited, codominant genetic markers. If gene flow is restricted among populations, then the genotype of an individual tells something about its origin. Provided that dispersal occurs at the juvenile stage and that sampling is carried out on adults, genotypes sampled from the dispersing sex should on average be less likely (compared to genotypes from the philopatric sex) in the population in which they were sampled. The dispersing sex should be less genetically structured and should present a larger heterozygote deficit. In this study we use computer simulations and a permutation test on four statistics to investigate the conditions under which sex-biased dispersal can be detected. Two tests emerge as fairly powerful. We present results concerning the optimal sampling strategy (varying number of samples, individuals, loci per individual and level of polymorphism) under different amounts of dispersal for each sex. These tests for biases in dispersal are also appropriate for any attribute (e.g. size, colour, status) suspected to influence the probability of dispersal. A windows program carrying out these tests can be freely downloaded from http://www.unil.ch/izea/softwares/fstat.html
Resumo:
Despite the fact that in living cells DNA molecules are long and highly crowded, they are rarely knotted. DNA knotting interferes with the normal functioning of the DNA and, therefore, molecular mechanisms evolved that maintain the knotting and catenation level below that which would be achieved if the DNA segments could pass randomly through each other. Biochemical experiments with torsionally relaxed DNA demonstrated earlier that type II DNA topoisomerases that permit inter- and intramolecular passages between segments of DNA molecules use the energy of ATP hydrolysis to select passages that lead to unknotting rather than to the formation of knots. Using numerical simulations, we identify here another mechanism by which topoisomerases can keep the knotting level low. We observe that DNA supercoiling, such as found in bacterial cells, creates a situation where intramolecular passages leading to knotting are opposed by the free-energy change connected to transitions from unknotted to knotted circular DNA molecules.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.
Resumo:
DnaSP is a software package for the analysis of DNA polymorphism data. Present version introduces several new modules and features which, among other options allow: (1) handling big data sets (~5 Mb per sequence); (2) conducting a large number of coalescent-based tests by Monte Carlo computer simulations; (3) extensive analyses of the genetic differentiation and gene flow among populations; (4) analysing the evolutionary pattern of preferred and unpreferred codons; (5) generating graphical outputs for an easy visualization of results. Availability: The software package, including complete documentation and examples, is freely available to academic users from: http://www.ub.es/dnasp
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
We formulate a new mixing model to explore hydrological and chemical conditions under which the interface between the stream and catchment interface (SCI) influences the release of reactive solutes into stream water during storms. Physically, the SCI corresponds to the hyporheic/riparian sediments. In the new model this interface is coupled through a bidirectional water exchange to the conventional two components mixing model. Simulations show that the influence of the SCI on stream solute dynamics during storms is detectable when the runoff event is dominated by the infiltrated groundwater component that flows through the SCI before entering the stream and when the flux of solutes released from SCI sediments is similar to, or higher than, the solute flux carried by the groundwater. Dissolved organic carbon (DOC) and nitrate data from two small Mediterranean streams obtained during storms are compared to results from simulations using the new model to discern the circumstances under which the SCI is likely to control the dynamics of reactive solutes in streams. The simulations and the comparisons with empirical data suggest that the new mixing model may be especially appropriate for streams in which the periodic, or persistent, abrupt changes in the level of riparian groundwater exert hydrologic control on flux of biologically reactive fluxes between the riparian/hyporheic compartment and the stream water.
Resumo:
A joint project between the Paul Scherrer Institut (PSI) and the Institute of Radiation Physics was initiated to characterise the PSI whole body counter in detail through measurements and Monte Carlo simulation. Accurate knowledge of the detector geometry is essential for reliable simulations of human body phantoms filled with known activity concentrations. Unfortunately, the technical drawings provided by the manufacturer are often not detailed enough and sometimes the specifications do not agree with the actual set-up. Therefore, the exact detector geometry and the position of the detector crystal inside the housing were determined through radiographic images. X-rays were used to analyse the structure of the detector, and (60)Co radiography was employed to measure the core of the germanium crystal. Moreover, the precise axial alignment of the detector within its housing was determined through a series of radiographic images with different incident angles. The hence obtained information enables us to optimise the Monte Carlo geometry model and to perform much more accurate and reliable simulations.
Resumo:
Simulation is a useful tool in cardiac SPECT to assess quantification algorithms. However, simple equation-based models are limited in their ability to simulate realistic heart motion and perfusion. We present a numerical dynamic model of the left ventricle, which allows us to simulate normal and anomalous cardiac cycles, as well as perfusion defects. Bicubic splines were fitted to a number of control points to represent endocardial and epicardial surfaces of the left ventricle. A transformation from each point on the surface to a template of activity was made to represent the myocardial perfusion. Geometry-based and patient-based simulations were performed to illustrate this model. Geometry-based simulations modeled ~1! a normal patient, ~2! a well-perfused patient with abnormal regional function, ~3! an ischaemic patient with abnormal regional function, and ~4! a patient study including tracer kinetics. Patient-based simulation consisted of a left ventricle including a realistic shape and motion obtained from a magnetic resonance study. We conclude that this model has the potential to study the influence of several physical parameters and the left ventricle contraction in myocardial perfusion SPECT and gated-SPECT studies.