1000 resultados para Matemáticos
Resumo:
Resumen tomado de la publicación
Resumo:
Monográfico con el título: 'Convergencia tecnológica: la producción de pedagogías high tech'. Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen tomado del autor
Resumo:
Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Educación matemática y tecnologías de la información'. Resumen basado en el de la publicación
Resumo:
La Comisión Internacional para el estudio y mejora de la enseñanza matemática nace de la inquietud de matemáticos, pedagogos, psicólogos y epistemólogos, interesados en estudiar y remediar el fallo que en la educación de todos los países presentaba la enseñanza de las matemáticas, especialmente en los niveles primario y secundario. Estos expertos estimaban que la coordinación de esfuerzos comunes en un plano internacional podría realizar el anhelo de una reforma profunda y eficaz en los programas, métodos y modos de enseñar nuestra ciencia en el mundo.
Resumo:
Crónica de los actos acontecidos en la Reunión de la Comisión Internacional para el estudio y mejora de la enseñanza de las matemáticas, celebrada entre el 21 y el 27 del mes de abril en el Instituto San Isidro de Madrid, en la que participaron profesores de Alemania, Bélgica, Francia, Gran Bretaña, Italia, Portugal, Suiza, Uruguay, Yugoslavia y España. Esta reunión tuvo gran importancia no solo por el número de participantes, más de 50 profesores extranjeros y cerca de 200 españoles, representantes de la enseñanza oficial y privada y también porque era la primera vez que se celebraba en la ciudad de Madrid. El tema general del Congreso fue 'El material de enseñanza' y los trabajos que se presentaron fueron: 1. Conferencias. 2. Trabajos de seminario de las subcomisiones. 3. Proyección de films matemáticos. 4. Clases experimentales. 5. Visitas a la exposición.
Resumo:
Premio a la Innovación Educativa, 2000, Tercer premio. Anexo Memoria en C-Innov. 114
Resumo:
Convocatoria de Premios Nacionales de Investigación e Innovación Educativa 2005, modalidad de Innovación Educativa, segundo premio. Resumen basado en el de los autores
Resumo:
Documentar aplicaciones matemáticas presentes en bibliografía varia. Catalogar videofilms sobre Matemáticas. Evaluar efectos de la selectividad en la enseñanza de la Matemática de COU. Evaluar el peso que madurez, nivel matemático, carrera elegida y enseñanza media recibida, tienen en el rendimiento matemático de primero. Evaluar por carrera dificultad y criterio calificador en la Matemática de primero, y factores que inciden en su elección. Mejorar los currículums matemáticos (ciclo 1). 1) Aplicaciones Matemáticas. 2) Vídeos matemáticos. 3) 88 alumnos de COU (IB Manises, Carcagente, Sorolla-Valencia). 4) 439 de primero y segundo de Agronomía, Biología, Matemáticas, Informática y Química, universidades de Valencia y Alicante. 5) Programas: Química, Biología, Ingeniería, Medicina, Geología, Economía (Madrid, Barcelona, Valencia, Zaragoza, Alicante, UNED). Representativas. Selección de aplicaciones matemáticas por varias disciplinas. Considera, por materias, videofilms extranjeros. Considera dos variables independientes: conocimientos y comprensión y capacidad de análisis, síntesis y aplicación de las Matemáticas de COU. La dependiente es la nota en Matemáticas de COU. Considera las variables independientes: madurez, nota en selectividad (NS), nivel de Matemáticas, nota Matemáticas COU (NC), carrera elegida (CE) y enseñanza media estatal o privada recibida (EM). La variable dependiente es la nota en Matemáticas de primero de carrera (NU). Analiza contenidos matemáticos de los programas de la Mathematical Association of America. Visión general, selección de aplicaciones de Matemáticas determinista y bibliografía. Relación de distribuidoras y videofilms catálogo de la Open University. Bajo rendimiento del alumnado en las pruebas ad hoc y nota alta en Matemáticas de COU. Los conocimientos y capacidades medidos por aquellas influyen, casi por igual, en esa nota de COU. Esa nota no predice el éxito en Matemáticas de primero en conjunto. Los alumnos con mejor nota en Matemáticas de COU y Selectividad y los de enseñanza media privada tienden a carreras técnicas. Destacan lagunas sobre Matemáticas en Químicas, Biológicas, Geológicas, Medicina, Económicas, Ingeniería. Esta segunda parte se complementa con la primera, mismo título, incluída en el X Plan Nacional de Investigación Educativa. Los informes sobre aplicaciones y videofilms matemáticos son de gran ayuda para el profesorado universitario. Incidencia de cuestiones de análisis, síntesis y aplicación en la nota de Matemáticas de COU que contrasta con su ausencia en Selectividad. La falta de una visión de conjunto en las Matemáticas de COU provoca un rendimiento bajo. No incidencia de la Selectividad en el éxito en Matemáticas de primero de carrera. Conveniencia de que cada centro publique su modelo de predicción del éxito para orientar al alumno. Inflexibilidad del sistema curricular universitario.
Resumo:
Planificar la enseñanza de la Matemática en la universidad, ciclo 1, y elaborar modelos para las pruebas de acceso. Conocer el uso de la Matemática en la práctica laboral. Determinar sistema de acceso a la universidad, contenidos matemáticos de COU y pruebas matemáticas de Selectividad, más idóneos, mediante un análisis comparado con otros países. Elaborar estudios introductorios de los principales temas matemáticos, que sirvan de ayuda a un profesorado heterogéneo. Número indeterminado de licenciados en Ingeniería, Física, Química, Biología, Medicina, Farmacia, Sociología, Economía, Psicología y Pedagogía en activo. Sistema de acceso a la universidad, pruebas y programas matemáticos en varios países. Contenidos matemáticos usuales en COU y la universidad. Se consideran las nociones matemáticas empleadas por la muestra en su práctica laboral. Sistema de acceso a la Universidad vigentes en Francia, RDA, Suiza, Austria, Gran Bretaña y EEUU. Contenidos matemáticos de los programas de las pruebas de acceso de varios países y España. Tipo de pruebas matemáticas empleado en varios países. Esta metodología: visión introductoria, enfoque histórico y alternativo y apoyo bibliográfico para cada contenido. Se detalla qué Matemáticas emplean los profesionales. Cálculo y análisis se usan bastante en todo sector laboral, álgebra y geometría, sobre todo en Ingenieria, por su relación con la tecnología, probabilidad y estadística, las más usadas, en carreras experimentales. Se detallan sistemas de acceso, pruebas y contenidos matemáticos en varios países, se recomienda que los examenes sean independientes para cada materia y los tribunales, nombrados por las universidades, tengan un representante del centro escolar. Las universidades dicten normas de acceso sin considerar expedientes académicos, el programa matemático sea más amplio y menos universitario, con métodos numéricos sencillos y aplicaciones prácticas. El examen consta de 2 partes, multirrespuesta y problemas, que evalúen objetivos de conocimiento, comprensión y aplicación y de síntesis y análisis. Se elaboraron 10 monografías: no reales, sucesiones y series. Convergencia y continuidad, espacios métricos y estructuras topológicas y algebraicas, cálculo diferencial, optimización, estructuras del álgebra, polinomios, álgebra lineal, geometría, probabilidad, estadística. Se han elaborado tres informes cualitativos, modalidades existentes en las pruebas de acceso a la universidad, contenidos de esas pruebas y enfoque didáctico que debe darse a las asignaturas matemáticas en el primer ciclo universitario, y un estudio de campo, cuantificación del uso de diversos tópicos matemáticos por parte de los titulados superiores, en la docencia, en la investigación y en el ejercicio profesional, como contribución a la mejora del nivel didáctico de las asignaturas de Matemáticas que se imparten en la universidad y del actual sistema de acceso a la Enseñanza Superior.
Resumo:
Analizar las estrategias específicas de aprendizaje en el área de Matemáticas utilizadas por los alumnos de Bachillerato-LOGSE; crear una escala con garantías de fiabilidad y validez que, en calidad de instrumento de evaluación cognitiva, puedan utilizar los profesores de Matemáticas respondiendo a las exigencias de la LOGSE, atenta a los procesos y no sólo a los resultados del aprendizaje. Las hipótesis principales que se plantean son: 1. El rendimiento académico (RA) de los alumnos depende de las estrategias o pensamiento estratégico (PE) utilizado por los alumnos en su actividad a lo largo del desarrollo del programa académico. 2. El autoconcepto del alumno en el área específica de Matemáticas predice su rendimiento académico. 3. Se da una fuerte relación positiva entre las estrategias de procesamiento de la infomarción y las estrategias metacognitivas. 4. Las estrategias que ejercen mayor influjo en el rendimiento académico del alumno en matemáticas son las de razonamiento y abstracción. 172 alumnos de segundo de Bachillerato de las tres provincias aragonesas. Este proyecto responde a la modalidad de investigación básica en contexto naturalista. Se utilizan dos variables independientes: las estrategias de aprendizaje de las matemáticas. 2. autoconcepto matemático. Como variable dependiente se toma el rendimiento académico (RA)del bachiller en el área de Matemáticas. Escala de estrategias de Matemáticas, Prueba-protocolo sobre conocimientos matemáticos del programa de Matemáticas II y la Escala de Autoconcepto en Matemáticas. Los resultados son:1. Una amplía mayoría de los bachilleres apenas utiliza los procesos propiamente estratégicos en su aprendizaje de las matemáticas: el 76 por cien se sitúan en el nivel bajo de pensamiento estratégico. 2. Se confirma la primera hipótesis: se da significativa y positiva relación entre el pensamiento estratégico del alumno y su rendimiento académico. 3. También se confirma la segunda hipótesis: existe una clara relación positiva entre, por un lado, pensamiento estratégico y autoconcepto matemático. 4.Confirmación de la tercera hipótesis: existe una clara relación positiva significativa entre el bloque de estrategias de procesamiento de la escala ESEAC y las estrategias de autocontrol. 5. Se confirma la cuarta hipótesis: relación altamente significativa entre rendimiento académico y estrategias de razonamiento y abstracción. Con relación a los clusters podemos decir: El perfil del cluster de estrategias altas supera la media de la muestra en todas las 8 estrategias de la escala ESEAC-Matemáticas, y sobresale especialmente en cuatro estrategias: comprensión y planificación de la tarea, razonamiento, grado de abstracción y metacognición. 7. El perfil del cluster de estrategias medias sobresale en planificación de la tarea, uso de diferentes hipótesis y metacognición. 8. El perfil del cluster de estrategias bajas es inferior a los otros dos en las 8 estrategias que componen la escala ESEAC-Matemáticas. Con relación a la utilidad de la escala ESEAC-Matemáticas para bachillerato, un objetivo especialmente relevante alcanzado es ofrecer a los profesores de matemáticas de bachillerato la escala ESEAC-Matemáticas en calidad de instrumento de evaluación cognitiva acorde con la exigencias de la LOGSE. El valor de esta escala se desprende de sus altos coeficientes de consistencia interna, Cronbach, 868 y validez extrínseca, entre rendimiento académico del alumno en Matemáticas y la puntuación global de la ESEAC-Matemáticas. Ha quedado sin aclarar si los datos obtenidos con la prueba protocolo pueden ser generalizables a todos los núcleos temáticos que integran el programa escolar de Matemáticas II. Por otro lado, ha sido imposible que la investigación recogiera información sobre el reparto de las variables dentro de cada estrategia, cuando las estrategias son evaluadas conjutnamente a partir de distintas variables.