1000 resultados para MASSAL SELECTION
Resumo:
Packaging is important not only in extending the shellife of fish and fishery products but also improving their marketability. In the recent years, significant development have taken place in the packaging industry. During the past decade in India, there is almost a packaging revolution with the availability of variety packaging materials, thus generating better packaging consciousness in other producer/manufacturing industries. But unfortunately, such realisation is not forthcoming in the fisheries sector and packaging techniques for local and export trade continues to be on traditional lines with their inherent drawbacks and limitations. Better packaging ensures improved quality and presentation of the products and ensures higher returns to the producer. Among several packaging materials used in fishery industry, ISI specifications had been formulated only for corrugated fibre board boxes for export of seafoods and froglegs. This standard was formulated before containersiation came into existance in the export of marine products. Before containerisation, the standards were stringent in view of the rough handling, transportation and storage. Two of the common defects reported in the master cartons exported from India are low mechanical strength and tendency to get wet. They are weakened by the deposits of moisture caused by temperature fluctuations during loading, unloading and other handling stages. It is necessary to rectify the above defects in packaging aquatic products and hence in the present study extensive investigations are carried out to find out the reasons for the damage of master cartons, to evolve code of practice for the packaging oi frozen shrimp for exports, development of alternative style of packaging for the shipping container, development of suitable consumer packaging materials for fish soup powder, cured dried mackeral, fish pickles in oil and frozen shrimp. For the development of suitable packaging materials, it is absolutely essential to know the properties of packaging materials, effect of different packaging materials on theirshelf life and their suitability for food contact applications.
Resumo:
The properties of synthetic fibres vary with thc inherent physical characteristics of the basic raw materials used mode of preparation of yarns and method of construction of twines. Since the synthetic fibres as maufactured from polymers which are synthesized from simple chemical units, the qualities of man-made fibres can he influenced by the process of manufacture and certain modifications can even be introduced at the processing stage to meet any specific requirement to a certain extent. Hence, an elaborate study of the properties of fish not twines produced has been taken up with a view to determining their suitability for various types of fishing gear with particular reference to conditions prevailing in India.
Resumo:
Treating e-mail filtering as a binary text classification problem, researchers have applied several statistical learning algorithms to email corpora with promising results. This paper examines the performance of a Naive Bayes classifier using different approaches to feature selection and tokenization on different email corpora
Resumo:
For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology
Resumo:
Marine yeasts (33 strains) were isolated from the coastal and offshore waters off Cochin. The isolates were identified and then characterized for the utilization of starch, gelatin, lipid, cellulose, urea, pectin, lignin, chitin and prawn-shell waste. Most of the isolates were Candida species. Based on the biochemical characterization, four potential strains were selected and their optimum pH and NaCI concentration for growth were determined. These strains were then inoculated into prawn-shell waste and SCP (single cell protein) generation was noted in terms of the increase in protein content of the final product.
Resumo:
In recent years, progress in the area of mobile telecommunications has changed our way of life, in the private as well as the business domain. Mobile and wireless networks have ever increasing bit rates, mobile network operators provide more and more services, and at the same time costs for the usage of mobile services and bit rates are decreasing. However, mobile services today still lack functions that seamlessly integrate into users’ everyday life. That is, service attributes such as context-awareness and personalisation are often either proprietary, limited or not available at all. In order to overcome this deficiency, telecommunications companies are heavily engaged in the research and development of service platforms for networks beyond 3G for the provisioning of innovative mobile services. These service platforms are to support such service attributes. Service platforms are to provide basic service-independent functions such as billing, identity management, context management, user profile management, etc. Instead of developing own solutions, developers of end-user services such as innovative messaging services or location-based services can utilise the platform-side functions for their own purposes. In doing so, the platform-side support for such functions takes away complexity, development time and development costs from service developers. Context-awareness and personalisation are two of the most important aspects of service platforms in telecommunications environments. The combination of context-awareness and personalisation features can also be described as situation-dependent personalisation of services. The support for this feature requires several processing steps. The focus of this doctoral thesis is on the processing step, in which the user’s current context is matched against situation-dependent user preferences to find the matching user preferences for the current user’s situation. However, to achieve this, a user profile management system and corresponding functionality is required. These parts are also covered by this thesis. Altogether, this thesis provides the following contributions: The first part of the contribution is mainly architecture-oriented. First and foremost, we provide a user profile management system that addresses the specific requirements of service platforms in telecommunications environments. In particular, the user profile management system has to deal with situation-specific user preferences and with user information for various services. In order to structure the user information, we also propose a user profile structure and the corresponding user profile ontology as part of an ontology infrastructure in a service platform. The second part of the contribution is the selection mechanism for finding matching situation-dependent user preferences for the personalisation of services. This functionality is provided as a sub-module of the user profile management system. Contrary to existing solutions, our selection mechanism is based on ontology reasoning. This mechanism is evaluated in terms of runtime performance and in terms of supported functionality compared to other approaches. The results of the evaluation show the benefits and the drawbacks of ontology modelling and ontology reasoning in practical applications.
Resumo:
Adoption of hybrids and improved varieties has remained low in the smallholder farming sector of South Africa, despite maize being the staple food crop for the majority of households. The objective of this study was to establish preferred maize characteristics by farmers which can be used as selection criteria by maize breeders in crop improvement. Data were collected from three villages of a selected smallholder farming area in South Africa using a survey covering 300 households and participatory rural appraisal methodology. Results indicated a limited selection of maize varieties grown by farmers in the area compared to other communities in Africa. More than 97% of the farmers grew a local landrace called Natal-8-row or IsiZulu. Hybrids and improved open pollinated varieties were planted by less than 40% of the farmers. The Natal-8-row landrace had characteristics similar to landraces from eastern and southern Africa and closely resembled Hickory King, a landrace still popular in Southern Africa. The local landrace was preferred for its taste, recycled seed, tolerance to abiotic stresses and yield stability. Preferred characteristics of maize varieties were high yield and prolificacy, disease resistance, early maturity, white grain colour, and drying and shelling qualities. Farmers were willing to grow hybrids if the cost of seed and other inputs were affordable and their preferences were considered. Our results show that breeding opportunities exist for improving the farmers’ local varieties and maize breeders can take advantage of these preferred traits and incorporate them into existing high yielding varieties.
Resumo:
A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.
Resumo:
A difficulty in the design of automated text summarization algorithms is in the objective evaluation. Viewing summarization as a tradeoff between length and information content, we introduce a technique based on a hierarchy of classifiers to rank, through model selection, different summarization methods. This summary evaluation technique allows for broader comparison of summarization methods than the traditional techniques of summary evaluation. We present an empirical study of two simple, albeit widely used, summarization methods that shows the different usages of this automated task-based evaluation system and confirms the results obtained with human-based evaluation methods over smaller corpora.
Resumo:
We present a new method to select features for a face detection system using Support Vector Machines (SVMs). In the first step we reduce the dimensionality of the input space by projecting the data into a subset of eigenvectors. The dimension of the subset is determined by a classification criterion based on minimizing a bound on the expected error probability of an SVM. In the second step we select features from the SVM feature space by removing those that have low contributions to the decision function of the SVM.
Resumo:
A regulator imposing “sales restrictions” on firms competing in oligopolistic markets may enhance quality provision by the firms. Moreover, for most restrictions levels, the impact on quality selection is invariant to the mode of competition
Resumo:
A new method for the automated selection of colour features is described. The algorithm consists of two stages of processing. In the first, a complete set of colour features is calculated for every object of interest in an image. In the second stage, each object is mapped into several n-dimensional feature spaces in order to select the feature set with the smallest variables able to discriminate the remaining objects. The evaluation of the discrimination power for each concrete subset of features is performed by means of decision trees composed of linear discrimination functions. This method can provide valuable help in outdoor scene analysis where no colour space has been demonstrated as being the most suitable. Experiment results recognizing objects in outdoor scenes are reported
Resumo:
In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation
Resumo:
This paper describes the basis of citation auctions as a new approach to selecting scientific papers for publication. Our main idea is to use an auction for selecting papers for publication through - differently from the state of the art - bids that consist of the number of citations that a scientist expects to receive if the paper is published. Hence, a citation auction is the selection process itself, and no reviewers are involved. The benefits of the proposed approach are two-fold. First, the cost of refereeing will be either totally eliminated or significantly reduced, because the process of citation auction does not need prior understanding of the paper's content to judge the quality of its contribution. Additionally, the method will not prejudge the content of the paper, so it will increase the openness of publications to new ideas. Second, scientists will be much more committed to the quality of their papers, paying close attention to distributing and explaining their papers in detail to maximize the number of citations that the paper receives. Sample analyses of the number of citations collected in papers published in years 1999-2004 for one journal, and in years 2003-2005 for a series of conferences (in a totally different discipline), via Google scholar, are provided. Finally, a simple simulation of an auction is given to outline the behaviour of the citation auction approach
Resumo:
Selection of UAS student presentations from June 2009