950 resultados para Logistic maps
Resumo:
Many manifolds that do not admit Anosov diffeomorphisms are constructed. For example: the Cartesian product of the Klein bottle and a torus.
Resumo:
Relief shown pictorially.
Resumo:
Title in right upper margin: Important farmlands maps.
Resumo:
Polymineralic rocks undergo grain coarsening with increasing temperature in both static and deformational environments, as long as no mineral reactions occur. The grain coarsening in such rocks is complex because the different phases influence each other, and it is this interaction that controls the rate of grain coarsening of the entire aggregate. We present a mathematical approach to investigate coupled grain coarsening using a set of microstructural parameters, including grain size and volume fraction of both second phases and matrix mineral in combination with temperature information. Based on samples from polymineralic carbonate mylonites that were deformed at different temperatures, we demonstrate how the mathematical relation can be calibrated for this natural system. Using such data sets for other lithologies, grain coarsening maps can be generated, which allow the prediction of microstructural evolution in polymineralic rocks. Such predictions are crucial for all subdisciplines in the earth sciences that require fundamental knowledge about microstructural changes and rheology of an orogen at different depths, such as structural geology, geophysics, geodynamics, and metamorphic petrology.
Resumo:
In text: In 1986 the Statue will be 100 years old.
Resumo:
En este trabajo se propone un nuevo sistema híbrido para el análisis de sentimientos en clase múltiple basado en el uso del diccionario General Inquirer (GI) y un enfoque jerárquico del clasificador Logistic Model Tree (LMT). Este nuevo sistema se compone de tres capas, la capa bipolar (BL) que consta de un LMT (LMT-1) para la clasificación de la polaridad de sentimientos, mientras que la segunda capa es la capa de la Intensidad (IL) y comprende dos LMTs (LMT-2 y LMT3) para detectar por separado tres intensidades de sentimientos positivos y tres intensidades de sentimientos negativos. Sólo en la fase de construcción, la capa de Agrupación (GL) se utiliza para agrupar las instancias positivas y negativas mediante el empleo de 2 k-means, respectivamente. En la fase de Pre-procesamiento, los textos son segmentados por palabras que son etiquetadas, reducidas a sus raíces y sometidas finalmente al diccionario GI con el objetivo de contar y etiquetar sólo los verbos, los sustantivos, los adjetivos y los adverbios con 24 marcadores que se utilizan luego para calcular los vectores de características. En la fase de Clasificación de Sentimientos, los vectores de características se introducen primero al LMT-1, a continuación, se agrupan en GL según la etiqueta de clase, después se etiquetan estos grupos de forma manual, y finalmente las instancias positivas son introducidas a LMT-2 y las instancias negativas a LMT-3. Los tres árboles están entrenados y evaluados usando las bases de datos Movie Review y SenTube con validación cruzada estratificada de 10-pliegues. LMT-1 produce un árbol de 48 hojas y 95 de tamaño, con 90,88% de exactitud, mientras que tanto LMT-2 y LMT-3 proporcionan dos árboles de una hoja y uno de tamaño, con 99,28% y 99,37% de exactitud,respectivamente. Los experimentos muestran que la metodología de clasificación jerárquica propuesta da un mejor rendimiento en comparación con otros enfoques prevalecientes.
Resumo:
BACKGROUND: The purpose of the present study was to investigate the diagnostic value of T2-mapping in acute myocarditis (ACM) and to define cut-off values for edema detection. METHODS: Cardiovascular magnetic resonance (CMR) data of 31 patients with ACM were retrospectively analyzed. 30 healthy volunteers (HV) served as a control. Additionally to the routine CMR protocol, T2-mapping data were acquired at 1.5 T using a breathhold Gradient-Spin-Echo T2-mapping sequence in six short axis slices. T2-maps were segmented according to the 16-segments AHA-model and segmental T2 values as well as the segmental pixel-standard deviation (SD) were analyzed. RESULTS: Mean differences of global myocardial T2 or pixel-SD between HV and ACM patients were only small, lying in the normal range of HV. In contrast, variation of segmental T2 values and pixel-SD was much larger in ACM patients compared to HV. In random forests and multiple logistic regression analyses, the combination of the highest segmental T2 value within each patient (maxT2) and the mean absolute deviation (MAD) of log-transformed pixel-SD (madSD) over all 16 segments within each patient proved to be the best discriminators between HV and ACM patients with an AUC of 0.85 in ROC-analysis. In classification trees, a combined cut-off of 0.22 for madSD and of 68 ms for maxT2 resulted in 83% specificity and 81% sensitivity for detection of ACM. CONCLUSIONS: The proposed cut-off values for maxT2 and madSD in the setting of ACM allow edema detection with high sensitivity and specificity and therefore have the potential to overcome the hurdles of T2-mapping for its integration into clinical routine.
Resumo:
The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.
Resumo:
This work is devoted to creating an abstract framework for the study of certain spectral properties of parabolic systems. Specifically, we determine under which general conditions to expect the presence of absolutely continuous spectral measures. We use these general conditions to derive results for spectral properties of time-changes of unipotent flows on homogeneous spaces of semisimple groups regarding absolutely continuous spectrum as well as maximal spectral type; the time-changes of the horocycle flow are special cases of this general category of flows. In addition we use the general conditions to derive spectral results for twisted horocycle flows and to rederive spectral results for skew products over translations and Furstenberg transformations.
Resumo:
Let S(M) be the ring of (continuous) semialgebraic functions on a semialgebraic set M and S*(M) its subring of bounded semialgebraic functions. In this work we compute the size of the fibers of the spectral maps Spec(j)1:Spec(S(N))→Spec(S(M)) and Spec(j)2:Spec(S*(N))→Spec(S*(M)) induced by the inclusion j:N M of a semialgebraic subset N of M. The ring S(M) can be understood as the localization of S*(M) at the multiplicative subset WM of those bounded semialgebraic functions on M with empty zero set. This provides a natural inclusion iM:Spec(S(M)) Spec(S*(M)) that reduces both problems above to an analysis of the fibers of the spectral map Spec(j)2:Spec(S*(N))→Spec(S*(M)). If we denote Z:=ClSpec(S*(M))(M N), it holds that the restriction map Spec(j)2|:Spec(S*(N)) Spec(j)2-1(Z)→Spec(S*(M)) Z is a homeomorphism. Our problem concentrates on the computation of the size of the fibers of Spec(j)2 at the points of Z. The size of the fibers of prime ideals "close" to the complement Y:=M N provides valuable information concerning how N is immersed inside M. If N is dense in M, the map Spec(j)2 is surjective and the generic fiber of a prime ideal p∈Z contains infinitely many elements. However, finite fibers may also appear and we provide a criterium to decide when the fiber Spec(j)2-1(p) is a finite set for p∈Z. If such is the case, our procedure allows us to compute the size s of Spec(j)2-1(p). If in addition N is locally compact and M is pure dimensional, s coincides with the number of minimal prime ideals contained in p. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product.