959 resultados para Length scale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The incidence of obesity amongst patients presenting for elective Total Hip Arthroplasty (THA) has increased in the last decade and the relationship between obesity and the need for joint replacement has been demonstrated. This study evaluates the effects of morbid obesity on outcomes following primary THA by comparing short-term outcomes in THA between a morbidly obese (BMI ≥40) and a normal weight (BMI 18.5 - <25) cohort at our institution between January 2003 and December 2010. Methods Thirty-nine patients included in the morbidly obese group were compared with 186 in the normal weight group. Operative time, length of stay, complications, readmission and length of readmission were compared. Results Operative time was increased in the morbidly obese group at 122 minutes compared with 100 minutes (p=0.002). Post-operatively there was an increased 30-day readmission rate related to surgery of 12.8% associated with BMI ≥40 compared with 2.7% (p= 0.005) as well as a 5.1 fold increase in surgery related readmitted bed days - 0.32 bed days per patient for normal weight compared with 1.64 per patient for the morbidly obese (p=0.026). Conclusion Morbidly obese patients present a technical challenge and likely this and the resultant complications are underestimated. More work needs to be performed in order to enable suitable allocation of resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 6-item Kessler Psychological Distress Scale (K6; Kessler et al., 2002) is a screener for psychological distress that has robust psychometric properties among adults. Given that a significant proportion of adolescents experience mental illness, there is a need for measures that accurately and reliably screen for mental disorders in this age group. This study examined the psychometric properties of the K6 in a large general population sample of adolescents (N = 4,434; mean age = 13.5 years; 44.6% male). Factor analyses were conducted to examine the dimensionality of the K6 in adolescents and to investigate sex-based measurement invariance. This study also evaluated the K6 as a predictor of scores on the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997). The K6 demonstrated high levels of internal consistency, with the 6 items loading primarily on 1 factor. Consistent with previous research, females reported higher mean levels of psychological distress when compared with males. The identification of sex-based measurement noninvariance in the item thresholds indicated that these mean differences most likely represented reporting bias in the K6 items rather than true differences in the underlying psychological distress construct. The K6 was a fair to good predictor of abnormal scores on the SDQ, but predictive utility was relatively low among males. Future research needs to focus on refining and augmenting the K6 scale to maximize its utility in adolescents. (PsycINFO Database Record (c) 2015 APA, all rights reserved)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decades mean-field models, in which large-scale magnetic fields and differential rotation arise due to the interaction of rotation and small-scale turbulence, have been enormously successful in reproducing many of the observed features of the Sun. In the meantime, new observational techniques, most prominently helioseismology, have yielded invaluable information about the interior of the Sun. This new information, however, imposes strict conditions on mean-field models. Moreover, most of the present mean-field models depend on knowledge of the small-scale turbulent effects that give rise to the large-scale phenomena. In many mean-field models these effects are prescribed in ad hoc fashion due to the lack of this knowledge. With large enough computers it would be possible to solve the MHD equations numerically under stellar conditions. However, the problem is too large by several orders of magnitude for the present day and any foreseeable computers. In our view, a combination of mean-field modelling and local 3D calculations is a more fruitful approach. The large-scale structures are well described by global mean-field models, provided that the small-scale turbulent effects are adequately parameterized. The latter can be achieved by performing local calculations which allow a much higher spatial resolution than what can be achieved in direct global calculations. In the present dissertation three aspects of mean-field theories and models of stars are studied. Firstly, the basic assumptions of different mean-field theories are tested with calculations of isotropic turbulence and hydrodynamic, as well as magnetohydrodynamic, convection. Secondly, even if the mean-field theory is unable to give the required transport coefficients from first principles, it is in some cases possible to compute these coefficients from 3D numerical models in a parameter range that can be considered to describe the main physical effects in an adequately realistic manner. In the present study, the Reynolds stresses and turbulent heat transport, responsible for the generation of differential rotation, were determined along the mixing length relations describing convection in stellar structure models. Furthermore, the alpha-effect and magnetic pumping due to turbulent convection in the rapid rotation regime were studied. The third area of the present study is to apply the local results in mean-field models, which task we start to undertake by applying the results concerning the alpha-effect and turbulent pumping in mean-field models describing the solar dynamo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twitter’s hashtag functionality is now used for a very wide variety of purposes, from covering crises and other breaking news events through gathering an instant community around shared media texts (such as sporting events and TV broadcasts) to signalling emotive states from amusement to despair. These divergent uses of the hashtag are increasingly recognised in the literature, with attention paid especially to the ability for hashtags to facilitate the creation of ad hoc or hashtag publics. A more comprehensive understanding of these different uses of hashtags has yet to be developed, however. Previous research has explored the potential for a systematic analysis of the quantitative metrics that could be generated from processing a series of hashtag datasets. Such research found, for example, that crisis-related hashtags exhibited a significantly larger incidence of retweets and tweets containing URLs than hashtags relating to televised events, and on this basis hypothesised that the information-seeking and -sharing behaviours of Twitter users in such different contexts were substantially divergent. This article updates such study and their methodology by examining the communicative metrics of a considerably larger and more diverse number of hashtag datasets, compiled over the past five years. This provides an opportunity both to confirm earlier findings, as well as to explore whether hashtag use practices may have shifted subsequently as Twitter’s userbase has developed further; it also enables the identification of further hashtag types beyond the “crisis” and “mainstream media event” types outlined to date. The article also explores the presence of such patterns beyond recognised hashtags, by incorporating an analysis of a number of keyword-based datasets. This large-scale, comparative approach contributes towards the establishment of a more comprehensive typology of hashtags and their publics, and the metrics it describes will also be able to be used to classify new hashtags emerging in the future. In turn, this may enable researchers to develop systems for automatically distinguishing newly trending topics into a number of event types, which may be useful for example for the automatic detection of acute crises and other breaking news events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible constraint length channel decoders are required for software defined radios. This paper presents a novel scalable scheme for realizing flexible constraint length Viterbi decoders on a de Bruijn interconnection network. Architectures for flexible decoders using the flattened butterfly and shuffle-exchange networks are also described. It is shown that these networks provide favourable substrates for realizing flexible convolutional decoders. Synthesis results for the three networks are provided and a comparison is performed. An architecture based on a 2D-mesh, which is a topology having a nominally lesser silicon area requirement, is also considered as a fourth point for comparison. It is found that of all the networks considered, the de Bruijn network offers the best tradeoff in terms of area versus throughput.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widespread deployment of commercial-scale cellulosic ethanol currently hinges on developing and evaluating scalable processes whilst broadening feedstock options. This study investigates whole Eucalyptus grandis trees as a potential feedstock and demonstrates dilute acid pre-treatment (with steam explosion) followed by pre-saccharification simultaneous saccharification fermentation process (PSSF) as a suitable, scalable strategy for the production of bioethanol. Biomass was pre-treated in dilute H2SO4 at laboratory scale (0.1 kg) and pilot scale (10 kg) to evaluate the effect of combined severity factor (CSF) on pre-treatment effectiveness. Subsequently, pilot-scale pre-treated residues (15 wt.%) were converted to ethanol in a PSSF process at 2 L and 300 L scales. Good polynomial correlations (n = 2) of CSF with hemicellulose removal and glucan digestibility with a minimum R2 of 0.91 were recorded. The laboratory-scale 72 h glucan digestibility and glucose yield was 68.0% and 51.3%, respectively, from biomass pre-treated at 190 °C /15 min/ 4.8 wt.% H2SO4. Pilot-scale pre-treatment (180 °C/ 15 min/2.4 wt.% H2SO4 followed by steam explosion) delivered higher glucan digestibility (71.8%) and glucose yield (63.6%). However, the ethanol yields using PSSF were calculated at 82.5 and 113 kg/ton of dry biomass for the pilot and the laboratory scales, respectively. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier work has suggested that large-scale dynamos can reach and maintain equipartition field strengths on a dynamical time scale only if magnetic helicity of the fluctuating field can be shed from the domain through open boundaries. To test this scenario in convection-driven dynamos by comparing results for open and closed boundary conditions. Three-dimensional numerical simulations of turbulent compressible convection with shear and rotation are used to study the effects of boundary conditions on the excitation and saturation level of large-scale dynamos. Open (vertical field) and closed (perfect conductor) boundary conditions are used for the magnetic field. The contours of shear are vertical, crossing the outer surface, and are thus ideally suited for driving a shear-induced magnetic helicity flux. We find that for given shear and rotation rate, the growth rate of the magnetic field is larger if open boundary conditions are used. The growth rate first increases for small magnetic Reynolds number, Rm, but then levels off at an approximately constant value for intermediate values of Rm. For large enough Rm, a small-scale dynamo is excited and the growth rate in this regime increases proportional to Rm^(1/2). In the nonlinear regime, the saturation level of the energy of the mean magnetic field is independent of Rm when open boundaries are used. In the case of perfect conductor boundaries, the saturation level first increases as a function of Rm, but then decreases proportional to Rm^(-1) for Rm > 30, indicative of catastrophic quenching. These results suggest that the shear-induced magnetic helicity flux is efficient in alleviating catastrophic quenching when open boundaries are used. The horizontally averaged mean field is still weakly decreasing as a function of Rm even for open boundaries.