997 resultados para Ledoux, Marc


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crònica de la Jornada titulada 'L'home i la muntanya' organitzada el 30 de novembre de 1992 pel Museu Etnològic del Montseny per parlar de la interrelació entre home i natura, tot prenent com a marc referencial la muntanya del Montseny

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observational studies in the Indian subcontinent have shown that untreated nets may be protective against visceral leishmaniasis (VL). In this study, we evaluated the effect of untreated nets on the blood feeding rates of Phlebotomus argentipes as well as the human blood index (HBI) in VL endemic villages in India and Nepal. The study had a "before and after intervention" design in 58 households in six clusters. The use of untreated nets reduced the blood feeding rate by 85% (95% CI 76.5-91.1%) and the HBI by 42.2% (95% CI 11.1-62.5%). These results provide circumstantial evidence that untreated nets may provide some degree of personal protection against sand fly bites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sobre cinc poesies satíriques del ‘Cançoner de Saragossa’ que es coneixen amb el nom de 'Cicle contra Bernat Fajadell'. En la història lírica en català del segle XV aquests poemes tenen l’interès de presentar de manera conjunta diferents poetes dels quals se sap poc o gairebé res, i també comparteixen el mateix marc i un objectiu idèntic: atacar un religiós de vida llicenciosa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intervenció lliure d’Albert Rossich en la taula rodona entorn de les 'Regles de esquivar vocables i mots grossers o pagesívols', què va tenir lloc el 15 de gener de 2004 a la Sala de Graus de la Facultat de Filologia de la Universitat de Barcelona. Aquesta taula rodona se situa en el marc d’un Seminari de Cultura Catalana i Moderna coordinat per Lola Badia i Eulàlia Duran, del Departament de Filologia Catalana de la mateixa Universitat. Hi van participar Antoni Maria Badia i Margarit, Germà Colón, Antoni Ferrando i Mariàngela Vilallonga ; Agustí Alcoberro hi va actuar de moderador

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates is very high, allowing them to be used as feedback measures of a velocity-based low-level controller. The paper details the localization algorithm, by showing some graphical results, and the accuracy of the system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented