999 resultados para Inteligência artificial - Engenharia de Aplicações


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, perfil Engenharia Ecológica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, especialidade de Máquinas Eléctricas, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engenharia Informática, Área de Especialização em Arquiteturas, Sistemas e Redes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os sensores hiperespectrais que estão a ser desenvolvidos para aplicações em detecção remota, produzem uma elevada quantidade de dados. Tal quantidade de dados obriga a que as ferramentas de análise e processamento sejam eficientes e tenham baixa complexidade computacional. Uma tarefa importante na detecção remota é a determinação das substâncias presentes numa imagem hiperespectral e quais as suas concentrações. Neste contexto, Vertex component analysis (VCA), é um método não-supervisionado recentemente proposto que é eficiente e tem a complexidade computacional mais baixa de todos os métodos conhecidos. Este método baseia-se no facto de os vértices do simplex corresponderem às assinaturas dos elementos presentes nos dados. O VCA projecta os dados em direcções ortogonais ao subespaço gerado pelas assinaturas das substâncias já encontradas, correspondendo o extremo desta projecção à assinatura da nova substância encontrada. Nesta comunicação apresentam-se várias optimizações ao VCA nomeadamente: 1) a introdução de um método de inferência do sub-espaço de sinal que permite para além de reduzir a dimensionalidade dos dados, também permite estimar o número de substâncias presentes. 2) projeção dos dados é executada em várias direcções para garantir maior robustez em situações de baixa relação sinal-ruído. As potencialidades desta técnica são ilustradas num conjunto de experiências com dados simulados e reais, estes últimos adquiridos pela plataforma AVIRIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Sistemas Autónomos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Ramo de Sistemas Autónomos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia do Ambiente – Perfil Engenharia Sanitária

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores