941 resultados para Instantaneous complex power
Resumo:
A virtual power system can be interfaced with a physical system to form a power hardware-in-the-loop (PHIL) simulation. In this scheme, the virtual system can be simulated in a fast parallel processor to provide near real-time outputs, which then can be interfaced to a physical hardware that is called the hardware under test (HuT). Stable operation of the entire system, while maintaining acceptable accuracy, is the main challenge of a PHIL simulation. In this paper, after an extended stability analysis for voltage and current type interfaces, some guidelines are provided to have a stable PHIL simulation. The presented analysis have been evaluated by performing several experimental tests using a Real Time Digital Simulator (RTDS™) and a voltage source converter (VSC). The practical test results are consistent with the proposed analysis.
Resumo:
A long-held assumption in entrepreneurship research is that normal (i.e., Gaussian) distributions characterize variables of interest for both theory and practice. We challenge this assumption by examining more than 12,000 nascent, young, and hyper-growth firms. Results reveal that variables which play central roles in resource-, cognition-, action-, and environment-based entrepreneurship theories exhibit highly skewed power law distributions, where a few outliers account for a disproportionate amount of the distribution's total output. Our results call for the development of new theory to explain and predict the mechanisms that generate these distributions and the outliers therein. We offer a research agenda, including a description of non-traditional methodological approaches, to answer this call.
Resumo:
Computational neuroscience aims to elucidate the mechanisms of neural information processing and population dynamics, through a methodology of incorporating biological data into complex mathematical models. Existing simulation environments model at a particular level of detail; none allow a multi-level approach to neural modelling. Moreover, most are not engineered to produce compute-efficient solutions, an important issue because sufficient processing power is a major impediment in the field. This project aims to apply modern software engineering techniques to create a flexible high performance neural modelling environment, which will allow rigorous exploration of model parameter effects, and modelling at multiple levels of abstraction.
Resumo:
The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.