999 resultados para Indonesian film
Resumo:
Degradation and its temperature dependence of poly(methyl methacrylate) (PMMA) in the blend film of PMMA/SAN were investigated via ire-situ X-ray photoelectron spectroscopy(XPS). The results show that thermal degradation of PMMA takes place at 185, 130, 80 degrees C and even room temperature due to the existence of monochromatic X-ray. Furthermore, the degradation rate depends crucially on the experiment temperature.
Resumo:
Thin films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blend can phase separate upon heating to above its critical temperature. Temperature dependence of the surface composition and morphology in the blend thin film upon thermal treatment was studied using in situ X-ray photoelectron spectroscopy (XPS) and in situ atomic force microscopy (AFM). It was found that in addition to phase separation, the blend component preferentially diffused to and aggregated at the surface of the blend film, leading to the variation of surface composition with temperature. At 185 degrees C, above the critical temperature, the amounts of PMMA and SAN phases were comparable.
Resumo:
We investigated the electrical instability of vanadyl-phthalocyanine (VOPc) thin-film transistors (TFTs) at various temperatures. The results demonstrate a slow threshold voltage shift in the bias stress process and a rapid recovery after the removal of bias stress, which indicates that a slower degradation process occurs in the on state while a faster removal in the off state of VOPc TFTs. The shift of threshold voltage comes from traps generated at the organic/dielectrics interface. Additionally, a relaxation time of 10(7) s was obtained at room temperature according to the stretched exponential model, which is comparable to a-Si: H TFTs. Therefore, VOPc TFTs are suitable to be applied in flat panel displays.
Resumo:
The slippage effect of the polymer chains is investigated in the dewetting process of the polymer solution film. The solvent-induced dewetting is used in our experiments to study the dynamics of hole growth in the dewetting process of the polymer solution film. Our results show that in the case of the low molecular weight polystyrene (PS) film, the slippage effect of the polymer chains is not displayed and the radius of the holes is R similar to exp(t/tau); in the case of the higher molecular weight PS film, the slippage effect of the polymer chain is not valid in the case of the thin film and that is valid in the case of the thick film, and the dynamic process of hole growth divides into three stages (R similar to t, and then R similar to t(x) (2/3 < x < 1), finally, R similar to t). Besides, the solvent and substrate properties also influence the dewetting dynamics of the polymer solution film.
Resumo:
A new class of polymeric amine, namely, sulfonated cardo poly(arylene ether sulfone) (SPES-NH2) was synthesized and used for the preparation of thin-film composite membrane. The TFC membranes were prepared on a polysulfone supporting film through interfacial polymerization with trimesoyl chloride (TMC) solutions and amine solutions containing SPES-NH2 and m-phenylenediamine (MPDA). The resultant membranes were characterized with water permeation performance, chemical structure, hydrophilicity of active layer and membrane morphology including top surface and cross-section.
Resumo:
Three novel of isomeric tetra-functional biphenyl acid chloride: 3,3',5,5'-biphenyl tetraacyl chloride (mm-BTEC), 2,2',4,4'-biphenyl tetraacyl chloride (om-BTEC), and 2,2',5,5'-biphenyl tetraacyl chloride (op-BTEC) were synthesized, and used as new monomers for the preparation of the thin film composite (TFC) reverse osmosis (RO) membranes through interfacial polymerization with m-phenylenediamine (MPDA). The results of membrane performance test showed that membranes prepared from om-BTEC and op-BTEC had higher flux at the expanse of rejection compared with membranes prepared from mm-BTEC.
Resumo:
The effects of processing conditions on film morphology and molecular orientation were studied for a novel conjugated fluorene-bithiophene oligomer, oligo(9,9-dioctylfluorene-alt-bithiophene) (OF8T2). Depending on the method of film preparation, OF8T2 molecules adopt different orientations in the films. X-ray diffraction peak at 4.9 degrees of the OF8T2 film deposited from petroleum ether/dichloromethane mixture is attributed to a layering distance between sheets of OF8T2 chains, which are separated by the octyl side chains. Preferred orientation is clearly inferred through the absence of peaks corresponding to pi-pi stacking.
Resumo:
A facile phospholipid/room-temperature ionic liquid (RTIL) composite material based on dimyristoylphosphatidylcholine (DMPC) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) was exploited as a new matrix for immobilizing protein. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to characterize this composite film. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV-vis absorbance spectra showed that Hb still maintained its heme crevice integrity in this composite film.
Resumo:
An effective and facile method for fabrication of large area of aggregated gold nanorods (AuNRs) film was proposed by self-assembly of AuNRs at a toluene/water interface for the first time. It was found that large area of aggregated AuNRs film could be formed at the interface of toluene and water due to the interfacial tension between the two phases. The obtained large area of aggregated AuNRs film exhibits strong surface-enhanced Raman scattering (SERS) activity with 4-aminothiophenol (4-ATP) and 2-aminothiophenol (2-ATP) as the probe molecules based on the strong electromagnetic coupling effect between the very adjacent AuNRs.
Resumo:
The dewetting behavior of thin (about 30 nm) polystyrene (PS) films filled with different amount of (C6H5C2H4NH3)(2)PbI4 (PhE-PbI4) on the silicon substrate with a native oxide layer was investigated. For different additive concentrations, PhE-PbI4 showed different spatial distributions in the PS films, which had a strong influence on the film wettability, dewetting dynamics, and mechanism. With 0.5 wt % additive, PhE-PbI4 formed a noncontinuous diffusion layer, which caused a continuous hole nucleation in the film. With about 1 wt % additive, a continuous gradient distribution layer of PhE-PbI4 formed in the film, which inhibited the dewetting.
Resumo:
The morphology of a H-shaped block copolymer (poly(ethylene glycol) backbone and polystyrene branches (PS)(2)PEG(PS)(2)) in a thin film has been investigated. A peculiar square lamella that has a phase-separated microdomain at its surface is obtained after spin coating. The experimental temperature plays a critical role in the lamellar formation. The copolymer first self-assembles into square lamellar micelles with an incomplete crystalline core due to the crystallizability of PEG.
Resumo:
The dewetting behavior of polystyrene (PS) film on poly(methyl methacrylate) (PMMA) sublayer was investigated by changing the short-range roughness of the PMMA sublayer systemically. When the bilayer film was heated to the temperature above both Tgs, the protuberances formed in both layers to reduce the system energy. By tracing the dewetting process of the PS up-layer, the dewetting velocity was found to increase with the roughness of the sublayer.
Resumo:
We demonstrate a strikingly novel morphology of high-density polyethylene (HDPE) crystal obtained upon melt crystallization of spin-coated thin film. This crystal gives windmill-like morphology which contains a number of petals. A detailed inspection on this morphology reveals that each petal is actually composed of terrace-stacked PE lamellae, in which the polymer chains within crystallographic a-c planes adopt similar to 45 degrees tilting around b-axis. The surrounding domains associated with a petal of the windmill composed of twisted lamellar overgrowths with an identical orientation of their long axis, which is the crystallographic b-axis shared by the petal and its corresponding twisted lamellar overgrowths.
Resumo:
Oriented crystallization of CUSO4 center dot 5H(2)O on a Langmuir-Blodgett (LB) film of stearic acid has been studied in the temperature ranges of 73-68 degrees C and 53-20 degrees C, respectively. This is the first time that the LB film at temperature above its melting point has been served as a template to induce nucleation and growth of crystals. The experimental results demonstrated that the LB film in the liquid state has the ability of directing the nucleation and growth of crystals. Moreover, X-ray diffraction patterns of the as prepared crystals revealed that the orientation of the attached crystals on the LB film is affected by temperature greatly.