988 resultados para INSITU FT-IRAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the last few decades, Metal-Organic Frameworks (MOFs), also known as Coordination Polymers, have attracted worldwide research attentions due to their incremented fascinating architectures and unique properties. These multidimensional materials have been potential applications in distinct areas: gas storage and separation, ion exchange, catalysis, magnetism, in optical sensors, among several others. The MOF research group at the University of Aveiro has prepared MOFs from the combination of phosphonate organic primary building units (PBUs) with, mainly, lanthanides. This thesis documents the last findings in this area involving the synthesis of multidimensional MOFs based on four di- or tripodal phosphonates ligands. The organic PBUs were designed and prepared by selecting and optimizing the best reaction conditions and synthetic routes. The self-assembly between phosphonate PBUs and rare-earths cations led to the formation of several 1D, 2D and 3D families of isotypical MOFs. The preparation of these materials was achieved by using distinct synthetic approaches: hydro(solvo)thermal, microwave- and ultrasound-assisted, one-pot and ionothermal synthesis. The selection of the organic PBUs showed to have an important role in the final architectures: while flexible phosphonate ligands afforded 1D, 2D and dense 3D structures, a large and rigid organic PBU isolated a porous 3D MOF. The crystal structure of these materials was successfully unveiled by powder or single-crystal X-ray diffraction. All multidimensional MOFs were characterized by standard solid-state techniques (FT-IR, electron microscopy (SEM and EDS), solid-state NMR, elemental and thermogravimetric analysis). Some MOF materials exhibited remarkable thermal stability and robustness up to ca. 400 ºC. The intrinsic properties of some MOFs were investigated. Photoluminescence studies revealed that the selected organic PBUs are suitable sensitizers of Tb3+ leading to the isolation of intense green-emitting materials. The suppression of the O−H quenchers by deuteration or dehydration processes improves substantially the photoluminescence of the optically-active Eu3+-based materials. Some MOF materials exhibited high heterogeneous catalytic activity and excellent regioselectivity in the ring-opening reaction of styrene oxide (PhEtO) with methanol (100% conversion of PhEtO at 55 ºC for 30 min). The porous MOF material was employed in gas separation processes. This compound showed the ability to separate propane over propylene. The ionexchanged form of this material (containing K+ cations into its network) exhibited higher affinity for CO2 being capable to separate acetylene over this environment non-friendly gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, 2,2’-bipyridine (bipy), di-tert-butyl-2,2’-bipyridine (di-t-Bubipy), 2,2’-bipyridine-5,5’-dicarboxylic acid (H2bpdc), 2-[3(5)-pyrazolyl]pyridine (pzpy) and 2-(1-pentyl-3-pyrazolyl)pyridine (pent-pp) ligands were used as the N,N-chelate ligands in the formation of discrete [MoO2Cl2L]-type complexes. These complexes were employed as precursors for the preparation in aqueous media of oxomolybdenum(VI) products with a wide range of structural diversity. Three distinct heating methods were studied: hydrothermal, reflux or microwave-assisted synthesis. An alternative reaction with the inorganic molybdenum(VI) trioxide (MoO3) and the ligands di-t-Bu-bipy, H2bpdc and pzpy was also investigated under hydrothermal conditions. The distinct nature of the N,N-chelate ligands and/or the heating method employed promoted the isolation of a series of new oxomolybdenum(VI) hybrid materials that clearly reflected the strong structure-directing influence of these ligands. Thus, this thesis describes the synthesis and characterization of the discrete mononuclear [MoO2Cl2(pent-pp)], the dinuclear [Mo2O6(di-t-Bu-bipy)2] and the octanuclear [Mo8O22(OH)4(di-t-Bu-bipy)4] complexes as well as the highly unique polymeric materials {[MoO3(bipy)][MoO3(H2O)]}n, (DMA)[MoO3(Hbpdc)]·nH2O, [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n (fine structural details of compound [Mo2O6(pent-pp)]n are presently unknown; however, characterization data strongly pointed toward a polymeric oxide hybrid compound). The catalytic behaviour of the discrete complexes and the polymeric compounds was tested in olefin epoxidation reactions. Compounds [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n acted as sources of soluble active species that where identified as the oxodiperoxido complexes [MoO(O2)2(pzpy)] and [MoO(O2)2(pent-pp)], respectively. The majority of the compounds here presented were fully characterized by using solid-state techniques, namely elemental analyses, thermogravimetry, FT-IR, solid-state NMR, electron microscopy and powder X-ray diffraction (both from laboratory and/or synchrotron sources).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conversion of plant biomass-derived carbohydrates (preferably non-edible) into added-value products is envisaged to be at the core of the future biorefineries. Carbohydrates are the most abundant natural organic polymers on Earth. This work deals with the chemical valorisation of plant biomass, focusing on the acid-catalysed conversion of carbohydrates (mono and polysaccharides) to furanic aldehydes, namely 2-furaldehyde (Fur) and 5-hydroxymethyl-2-furaldehyde (Hmf), which are valuable platform chemicals that have the potential to replace a variety of oil derived chemicals and materials. The investigated reaction systems can be divided into two types depending on the solvent used to dissolve the carbohydrates in the reaction medium: water or ionic liquid-based systems. The reaction temperatures were greater than 150 ºC when the solvent was water, and lower than 150 º C in the cases of the ionic liquid-based catalytic systems. As alternatives to liquid acids (typically used in the industrial production of Fur), solid acid catalysts were investigated in these reaction systems. Aiming at the identification of (soluble and insoluble) reaction products, complementary characterisation techniques were used namely, FT-IR spectroscopy, liquid and solid state NMR spectroscopy, TGA, DSC and GC´GC-ToFMS analyses. Complex mixtures of soluble reaction products were obtained and different types of side reactions may occur. The requirements to be put on the catalysts for these reaction systems partly depend on the type of carbohydrates to be converted and the reaction conditions used. The thermal stability is important due to the fact that formation of humins and catalyst coking phenomena are characteristically inherent to these types of reactions systems leading to the need to regenerate the catalyst which can be effectively accomplished by calcination. Special attention was given to fully inorganic nanoporous solid acids, amorphous or crystalline, and consisting of nano to micro-size particles. The investigated catalysts were silicoaluminophosphates, aluminosilicates and zirconium-tungsten mixed oxides which are versatile catalysts in that their physicochemical properties can be fine-tuned to improve the catalytic performances in the conversion of different substrates (e.g. introduction of mesoporosity and modification of the acid properties). The catalytic systems consisting of aluminosilicates as solid acids and water as solvent seem to be more effective in converting pentoses and related polysaccharides into Fur, than hexoses and related polysaccharides into Hmf. The investigated solid acids exhibited fairly good hydrothermal stabilities. On the other hand, ionic liquid-based catalytic systems can allow reaching simultaneously high Fur and Hmf yields, particularly when Hmf is obtained from D-fructose and related polysaccharides; however, catalyst deactivation occurs and the catalytic reactions take place in homogeneous phase. As pointed out in a review of the state of the art on this topic, the development of truly heterogeneous ionic liquid-based catalytic systems for producing Fur and Hmf in high yields remains a challenge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mest., Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O processamento de sinais de fluxo sanguíneo tem sido objecto de interesse de muitos investigadores, no entanto até este momento, tanto quanto se sabe, não existe caracterização de sinais de ultra-som Doppler de fluxo sanguíneo em vasos cardíacos com inserção de bypass. A presente dissertação, inserida nos objectivos de um projecto de investigação internacional, apresenta as metodologias desenvolvidas com vista à tipificação de sinais ultra-sónicos de fluxo sanguíneo recolhidos em bypass cardíacos e à verificação da variabilidade da composição do sangue artificial com a temperatura ambiente e com a utilização de diferentes marcas dos seus compostos. No que concerne à composição do sangue artificial verifica-se que a utilização de detergentes de marcas diferentes não influencia o espectrograma dos sinais ultra-sónicos; contudo, o glicerol brasileiro possibilita melhor dispersão das partículas de PVC que o glicerol português. Verifica-se também que o aumento da temperatura a que o sangue artificial e o ambiente envolvente se encontram potencia claramente a identificação das envolventes do espectrograma correspondente. Os sinais ultra-sónicos de fluxo sanguíneo foram distinguidos em siglas FL, FR e FT e foram pré-processados removendo-se o ruído de baixas frequências (até 430Hz) e as baixas intensidades de potência (inferiores a um limiar de 35). Após a determinação da envolvente dos ciclos cardíacos, foi calculado o ciclo cardíaco médio de cada sigla. Analisando as características dos ciclos cardíacos médios: tempos de subida e descida do pico máximo, tempo acima da média do ciclo cardíaco médio, índice de pulsatilidade, frequências máxima e média e ainda a duração temporal, conseguiu identificar-se que os sinais FT apresentam durações temporais maiores e um espectrograma maioritariamente acima da frequência média do ciclo cardíaco, os sinais FR apresentam maior índice de pulsatilidade e maiores valores de frequência máxima. Os sinais FL apresentam características intermédias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal degradation and gaseous products evolving from the pyrolysis of sewage sludge, aimed at agricultural soil amendment, were investigated using Thermogravimetric Analysis in conjunction with Fourier Transform Infrared Analysis (TG-FTIR). The materials were studied in temperatures ranging from 30 to 800 ºC. Furthermore infrared spectra of sewage sludge samples were performed as a complementary technique. In parallel the sewage sludge was spiked with ibuprofen in order to test whether the mentioned techniques are able to detect the drug. Thermal analysis showed the range of 200-400ºC as the most characteristic for weight loss, corresponding with the organic matter volatilization, while the range of 500-800ºC was also characteristic and due to the volatilization of carbonates. On the other hand, ibuprofen-spiking tests identified at temperature range (150-250ºC) where the compound totally volatilizes, therefore, in this work, the detection of ibuprofen by TGA was established for concentrations higher than 0.5 g/kg sludge, concentration 102 times higher than the concentrations measured by other authors in regular sewage sludge (Martín, et al., 2010). A correlation has been found between the ibuprofen concentrations in the sludge and the intensity of the absorption bands, both for FT-IR spectra at the maximum emission temperature for ibuprofen (232ºC) as for the FT-IR spectra of the non-pyrolyzed samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente dissertação tem como objetivo principal contribuir para um maior conhecimento e compreensão das propriedades catalíticas de sistemas baseados em metais de transição com estado de oxidação elevado. O trabalho desenvolvido englobou a síntese e a caracterização de novos compostos de molibdénio, tendo como ponto de partida a síntese de cis-dioxocomplexos do tipo MoO2Cl2Ln (n = 1 ou 2, conforme ligandos bidentados ou monodentados, respetivamente) a partir dos precursores MoO2Cl2, MoO3 e Na2MoO4 com ligandos como dimetilformamida (DMF), tris(benzimidazolil)metano (HC(bim)3). Os compostos MoO2Cl2(DMF)2 (Capítulo2) e [MoO2Cl(HC(bim)3]Y (Y = Cl, BF4 e PF6) (Capítulo 3) foram testados como precursores catalíticos na epoxidação de olefinas, em fase heterogénea. O primeiro foi imobilizado no suporte MCM-41 enquanto os últimos foram heterogeneizados com recurso a líquidos iónicos - [BMIM]Y e [BMPy]Y (BIM = 1-n-butil-3-metilimidazólio, BMPy = 1-n-butil-3-metilpiridina; Y = BF4 ou PF6), como estratégia alternativa à heterogeneização dos catalisadores homogéneos. Por outro lado, aprofundou-se também a epoxidação de olefinas em fase homogénea e, para isso, sintetizaram-se os compostos Mo(CO)3(HC(pz)3) (HC(pz)3 = tris(1-pirazoli)metano), Mo(CO)3(HC(3,5-Me2pz)3 (HC(3,5-Me2pz)3 = tris(3,5-dimetil-1-pirazolil)metano) (Capítulo 4) e Mo(CO)4(BPM) (BPM = bis(pirazolil)metano) (Capítulo 5) a partir do material de partida Mo(CO)6. A descarbonilação oxidativa destes compostos, com TBHP, originaram estruturas cristalinas do tipo dioxo--oxo, [{MoO2(HC(pz)3)}2(2-O)][Mo6O19] e [{MoO2(HC(3,5-Me2pz)3)}2(2-O)][Mo6O19], e oxodiperoxo, MoO(O2)2(BPM), respetivamente. Obtiveram-se os mesmos produtos in situ durante as respetivas reações catalíticas. Todos os compostos foram utilizados como catalisadores ou pré-catalisadores na epoxidação de olefinas, com bons resultados. Por fim e, tendo em conta o crescente interesse em materiais híbridos orgânicos-inorgânicos baseados em óxidos de molibdénio, sintetizou-se o composto MoO2Cl2(pypzEA) (pypzEA = etil[(3-piridin-2-il)-1H-pirazol-1-il]acetato) o qual, ao reagir com água, originou o material híbrido [Mo2O6(HpypzA)] (HpypzA = [3-(piridin-2-il)-1H-pirazol-1-il]acetato) (Capítulo 6). A estrutura deste último composto foi resolvida por difração de monocristal e de raio-X de pós, em conjunto com a informação proveniente de técnicas como FT-IR, RMN 13C CP/MAS e análise elementar. Este material híbrido apresenta um bom desempenho catalítico quando o TBHP é usado como oxidante e continua estável e a comportar-se como um catalisador heterogéneo mesmo após sofrer testes de reciclagem e de filtração. Ainda durante este estudo constatou-se que a reação oxidativa do material de partida, MoO2Cl2(pypzEA), com TBHP, originou o oxo(diperoxo)complexo MoO(O2)2(pypzEA) e o complexo octamérico [Mo8O24(pypzEA)4] obtido previamente pela descarbonilação oxidativa do Mo(CO)4(pypzEA). Todos os catalisadores ou precursores de espécies ativas foram analisados por técnicas de caracterização comuns (AE, FT-IR, Raman, ATR, 1H RMN) bem como por técnicas de caracterização do estado sólido (EXAFS, DRX de pós e de cristal único, 13C e 29Si RMN CP MAS). Os compostos com propriedades catalíticas e pré-catalíticas promissoras foram estudados nas reações catalíticas de epoxidação de diversas olefinas, nomeadamente, cis-cicloocteno, 1-octeno, trans-2-octeno, -pineno, (R)-(+)-limoneno, estireno, norborneno, entre outras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório de estágio de mestrado, Nutrição Clínica, Universidade de Lisboa, Faculdade de Medicina, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on the evaluation of raw keratin as a potential material to develop composites with novel characteristics. Herein, we report a mild and eco-friendly fabrication of in-house extracted feather keratin-based novel enzyme assisted composites consisting of ethyl cellulose (EC) as a backbone material. A range of composites between keratin and EC using different keratin: EC ratios were prepared and characterised. Comparing keratin to the composites, the FT-IR peak at 1,630 cm-1 shifted to a lower wavenumber of 1,610 cm-1 in keratin-EC which typically indicates the involvement of β-sheet structures of the keratin during the graft formation process. SEM analysis revealed that the uniform dispersion of the keratin increases the area of keratin-EC contact which further contributes to the efficient functionality of the resulting composites. In comparison to the pristine keratin and EC, a clear shift in the XRD peaks was also observed at the specific region of 2-Theta values of keratin-g-EC. The thermo- mechanical properties of the composites reached their highest levels in comparison to the keratin which was too fragile to be measured for its mechanical properties. Considerable improvement in the water contact angle and surface tension properties was also recorded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today more than 99% of plastics are petroleum-based because of the availability and cost of the raw material. The durability of disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this issue. Enzymatic grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions, and increasing availability of scientific knowledge. Over the last several years, research covering various applications of robust enzymes like laccases and lipases has been increased rapidly, particularly in the field of polymer science, to graft multi-functional materials of interest. In principle, enzyme-assisted grafting may modify/impart a variety of functionalities to the grafted composites which individual materials fail to demonstrate on their own. The modified polymers through grafting have a bright future and their development is practically boundless. In the present study series of graft composites with poly(3-hydroxybutyrate) (P(3HB) as side chain and cellulose as a backbone polymer were successfully synthesised by introducing enzymatic grafting technique where laccase and lipase were used as model catalysts [1-3]. Subsequently, the resulting composites were removed from the casting surface under ambient environment and characterised by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) in detail. Moreover, the thermo-mechanical behaviours of the grafted composites were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analyser (DMA) measurements, respectively. In addition, hydrophobic and hydrophilic characteristics of the grafted polymers were studied through drop contour analysis using water contact angle (WCA). In comparison to the individual counterparts improvement was observed in the thermo- mechanical properties of the composites to varied extent. The tensile strength, elongation at break, and Young’s modulus values of the composites reached their highest levels in comparison to the films prepared with pure P(3HB) only which was too fragile to measure any of the above said characteristics. Interestingly, untreated P(3HB) was hydrophobic in nature and after lipase treatment P(3HB) and P(3HB)-EC-based graft composite attained higher level of hydrophilicity. This is a desired characteristic that enhances the biocompatibility of the materials for proper cell adhesion and proliferation therefore suggesting potential candidates for tissue engineering/bio-medical type applications [3]. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the laccase/lipase assisted grafting of P(3HB) [1-3]. The newly grafted composites exhibit unique functionalities with wider range of potential applications in bio-plastics, pharmaceutical, and cosmetics industries, tissue engineering, and biosensors. [1] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Cellulose 21, 3613-3621 (2014). [2] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Carbohydrate Polymers 113, 131-137 (2014). [3] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Polymer Chemistry In-Press, DOI: 10.1039/C4PY0 0857J (2014).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed novel composites by grafting caffeic acid (CA) onto the P(3HB)-EC based material and laccase from Trametes versicolor was used for grafting purposes. The resulting composites were designated as CA-g-P(3HB)-EC i.e., P(3HB)-EC (control), 5CA-g-P(3HB)-EC, 10CA-g-P(3HB)-EC, 15CA-g-P(3HB)-EC and 20CA-g-P(3HB)-EC. An FT-IR (Fourier-transform infrared spectroscopy) was used to examine the functional and elemental groups of the control and laccase-assisted graft composites. Evidently, 15CA-g-P(3HB)-EC composite exhibited resilient antibacterial activity against Gram-positive and Gram-negative bacterial strains, respectively. Moreover, a significant level of biocompatibility and biodegradability of the CA-g-P(3HB)-EC composites was also achieved with the human keratinocytes-like HaCaT cells and soil burial evaluation, respectively. In conclusion, the newly developed novel composites with multi characteristics could well represent the new wave of biomaterials for medical applications, and more specifically have promising future in the infection free would dressings, burn and/or skin regeneration field due to their sophisticated characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we propose a green route to prepare poly(3-hydroxybutyrate) [(P(3HB)] grafted ethyl cellulose (EC) based green composites with novel characteristics through laccase-assisted grafting. P(3HB) was used as a side chain whereas, EC as a backbone material under an ambient processing conditions. A novel laccase obtained from Aspergillus niger through its heterologous expression in Saccharomyces cerevisiae was used as a green catalyst for grafting purposes without the use of additional initiator and/or cross-linking agents. Subsequently, the resulting P(3HB)-g-EC composites were characterized using a range of analytical and imagining techniques. Fourier transform infrared spectroscopy (FT-IR) spectra showed an increase in the hydrogen-bonding type interactions between the side chains of P(3HB) and backbone material of EC. Evidently, X-ray diffraction (XRD) analysis revealed a decrease in the crystallinity of the P(3HB)-g-EC composites as compared to the pristine individual polymers. A homogeneous P(3HB) distribution was also achieved in case of the graft composite prepared in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator along with laccase as compared to the composite prepared using pure laccase alone. A substantial improvement in the thermal and mechanical characteristics was observed for grafted composites up to the different extent as compared to the pristine counterparts. The hydrophobic/hydrophilic properties of the grafted composites were better than those of the pristine counterparts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferreira de Castro (1898-1974) e Miguel Torga (1907-1995) viveram ambos, no início da adolescência, a dura experiência de emigração para o Brasil. O primeiro partiu com apenas doze anos, em 1911, o segundo, com treze, em 1920. Ambos procuraram o ―Eldorado‖, cruzaram o Atlântico num vapor, cresceram, amadureceram, regressaram a Portugal, revisitaram novamente o Brasil e escreveram sobre essas vivências, como é corroborado por Emigrantes e A Selva de Ferreira de Castro, o Diário, A Criação do Mundo, Traço de União de Miguel Torga que constituem o nosso corpus de trabalho. No presente artigo, analisaremos à luz da imagologia, um dos métodos da literatura comparada, que visa precisamente o estudo das imagens, as representações do Brasil que emergem da obra destes dois escritores. Nesta sequência, analisaremos, numa óptica comparatista, a ficcionalização das vivências dos autores, a trajectórias das suas personagens, contemplando, na configuração do espaço estrangeiro, as primeiras impressões e sua evolução, as descrições da paisagem, do povo, da vida e da cultura brasileiras. Além disso, seguiremos os caminhos da alteridade para desvendarmos igualmente o modo como é visto o ―outro‖, e a forma como se inscreve no discurso. Em suma, analisaremos o impacto da vivência da emigração, a importância desempenhada pelo país de acolhimento na obra dos dois escritores supramencionados, atendendo às ressonâncias da luso-brasilidade, alicerçadoras de uma maior abertura e dum diálogo mais próximo com o Brasil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.