974 resultados para Horizontal-flow anaerobic immobilized biomass reactor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Flow State Scale-2 (FSS-2) and Dispositional Flow Scale-2 (DFS-2) are presented as two self-report instruments designed to assess flow experiences in physical activity. Item modifications were made to the original versions of these scales in order to improve the measurement of some of the flow dimensions. Confirmatory factor analyses of an item identification and a cross-validation sample demonstrated a good fit of the new scales. There was support for both a 9-first-order factor model and a higher order model with a global flow factor. The item identification sample yielded mean item loadings on the first-order factor of .78 for the FSS-2 and .77 for the DFS-2. Reliability estimates ranged from .80 to .90 for the FSS-2, and .81 to .90 for the DFS-2. In the cross-validation sample, mean item loadings on the first-order factor were .80 for the FSS-2, and .73 for the DFS-2. Reliability estimates ranged between .80 to .92 for the FSS-2 and .78 to .86 for the DFS-2. The scales are presented as ways of assessing flow experienced within a particular event (FSS-2) or the frequency of flow experiences in chosen physical activity in general (DFS-2).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparisons are made between experimental measurements and numerical simulations of ionizing flows generated in a superorbital facility. Nitrogen, with a freestream velocity of around 10 km/s, was passed over a cylindrical model, and images were recorded using two-wavelength holographic interferometry. The resulting density, electron concentration, and temperature maps were compared with numerical simulations from the Langley Research Center aerothermodynamic upwind relaxation algorithm. The results showed generally good agreement in shock location and density distributions. Some discrepancies were observed for the electron concentration, possibly, because simulations were of a two-dimensional flow, whereas the experiments were likely to have small three-dimensional effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holographic interferometry measurements have been performed on high-speed, high-temperature gas flows with a laser output tuned near a resonant sodium transition. The technique allows the detection and quantification of the sodium concentration in the flow. By controlling the laser detuning and seeded sodium concentration, we performed flow visualization in low-density flows that are not normally detectable with standard interferometry. The technique was also successfully used to estimate the temperature in the boundary layer of the flow over a flat plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytoplasmic incompatibility (CI) in Drosophila simulans is related to infection of the germ line by a rickettsial endosymbiont (genus Wolbachia). Wolbachia were transferred by microinjection of egg cytoplasm into uninfected eggs of both D. simulans and D. melanogaster to generate infected populations. Transinfected strains of D. melanogaster with lower densities of Wolbachia than the naturally infected D. simulans strain did not express high levels of CI. However, transinfected D. melanogaster egg cytoplasm, transferred back into D. simulans, generated infected populations that expressed CI at levels near those of the naturally infected strain. A transinfected D. melanogaster line selected for increased levels of CI expression also displayed increased symbiont densities. These data suggest that a threshold level of infection is required for normal expression of CI and that host factors help determine the density of the symbiont in the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydraulic jump is characterized by strong energy dissipation and mixing, large-scale turbulence, air entrainment, waves and spray. Despite recent pertinent studies, the interaction between air bubbles diffusion and momentum transfer is not completely understood. The objective of this paper is to present experimental results from new measurements performed in rectangular horizontal flume with partially-developed inflow conditions. The vertical distributions of void fraction and air bubbles count rate were recorded for inflow Froude number Fr1 in the range from 5.2 to 14.3. Rapid detrainment process was observed near the jump toe, whereas the structure of the air diffusion layer was clearly observed over longer distances. These new data were compared with previous data generally collected at lower Froude numbers. The comparison demonstrated that, at a fixed distance from the jump toe, the maximum void fraction Cmax increases with the increasing Fr1. The vertical locations of the maximum void fraction and bubble count rate were consistent with previous studies. Finally, an empirical correlation between the upper boundary of the air diffusion layer and the distance from the impingement point was provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In high-velocity open channel flows, free-surface aeration is commonly observed. The effects of surface waves on the air-water flow properties are tested herein. The study simulates the air-water flow past a fixed-location phase-detection probe by introducing random fluctuations of the flow depth. The present model yields results that are close to experimental observations in terms of void fraction, bubble count rate and bubble/droplet chord size distributions. The results show that the surface waves have relatively little impact on the void fraction profiles, but that the bubble count rate profiles and the distributions of bubble and chord sizes are affected by the presence of surface waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rate expression for enzyme poisoning which are consistent with a Michaelis-Menten main reaction are used to analyze the performance of a fixed bed reactor containing immobilized enzyme. When enzyme deactivation results from the irreversible bonding of a product molecule to an existing substrate-enzyme complex, it is shown that minimum enzyme activity can occur in the interior of the bed, well away from the ends. This suggests that bed sectioning techniques may enable direct evaluation of fundamental poisoning mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are derived for the time and magnitude of failure of an isothermal CSTR with substrate-inhibited kinetics, caused by slow catalyst deactivation under three types of parallel and series mechanisms. Reactors operating at high space velocity are found to be most susceptible to early failure and poisoning by product is more dangerous than by reactant. The magnitude of the jump across steady states depends solely on the Langmuir-Hinshelwood kinetic parameters and a detailed analysis of reactor behavior during the jump itself is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of enzyme immobilization under the diffusion-controlled regime (i.e., fast attachment of enzyme compared to its diffusion) is modeled and theoretically solved in this article. Simple and compact solutions for the penetration depth of immobilized enzyme and the bulk enzyme concentration versus time are presented. Furthermore, the conditions for the validity of our solutions are also given in this article so that researchers can discover when the theoretical solutions can be applied to their systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used the DSMC method to determine contamination (impingement of atmospheric molecules) and the aerodynamic forces on a cold satellite when a protective “purge gas” is ejected from a sting protruding ahead of the satellite. Forward ejection of the purge gas provides the greatest protection for a given mass of purge gas and the aerodynamic drag can be significantly reduced, thus compensating for the backward reaction from the forward ejection. If the purge gas is ejected backward from the sting (towards the satellite) the ejection provides thrust and the net retarding force can be reduced to zero. Contamination can be reduced and the mass of purging gas is less than the mass of conventional rocket propellant required to maintain the orbit of an unprotected satellite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicic volcanic eruptions are typically accompanied by repetitive Long-Period (LP) seismicity that originates from a small region of the upper conduit. These signals have the capability to advance eruption prediction, since they commonly precede a change in the eruption vigour. Shear bands forming along the conduit wall, where the shear stresses are highest, have been linked to providing the seismic trigger. However, existing computational models are unable to generate shear bands at the depths where the LP signals originate using simple magma strength models. Presented here is a model in which the magma strength is determined from a constitutive relationship dependent upon crystallinity and pressure. This results in a depth-dependent magma strength, analogous to planetary lithospheres. Hence, in shallow highly-crystalline regions a macroscopically discontinuous brittle type of deformation will prevail, whilst in deeper crystal-poor regions there will be a macroscopically continuous plastic deformation mechanism. This will result in a depth where the brittle-ductile transition occurs, and here shear bands disconnected from the free-surface may develop. We utilize the Finite Element Method and use axi-symmetric coordinates to model magma flow as a viscoplastic material, simulating quasi-static shear bands along the walls of a volcanic conduit. Model results constrained to the Soufrière Hills Volcano, Montserrat, show the generation of two types of shear bands: upper-conduit shear bands that form between the free-surface to a few 100 metres below it and discrete shear bands that form at the depths where LP seismicity is measured to occur corresponding to the brittle-ductile transition and the plastic shear region. It is beyond the limitation of the model to simulate a seismic event, although the modelled viscosity within the discrete shear bands suggests a failure and healing cycle time that supports the observed LP seismicity repeat times. However, due to the paucity of data and large parameter space available these results can only be considered to be qualitative rather than quantitative at this stage.