966 resultados para Heat dissipation rate
Resumo:
Analiza el estado de la fisiología del fitoplancton de las aguas costeras cercanas a Perú
Resumo:
PURPOSE: This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. METHODS: Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. RESULTS: Time to exhaustion was reduced (P < 0.05) in hot (-35 ± 15 %) or hypoxia (-36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (-51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (-9 ± 1, -4 ± 1 and -6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. CONCLUSION: Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.
Resumo:
ABSTRACT: BACKGROUND: Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. RESULTS: Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. CONCLUSIONS: A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation.
Resumo:
This paper offers empirical evidence that a country's choice of exchange rate regime can have a signifficant impact on its medium-term rate of productivity growth. Moreover, the impact depends critically on the country's level of financial development, its degree of market regulation, and its distance from the global technology frontier. We illustrate how each of these channels may operate in a simple stylized growth model in which real exchange rate uncertainty exacerbates the negative investment e¤ects of domestic credit market constraints. The empirical analysis is based on an 83 country data set spanning the years 1960-2000. Our approach delivers results that are in striking contrast to the vast existing empirical exchange rate literature, which largely finds the effects of exchange rate volatility on real activity to be relatively small and insignificant.
Resumo:
Mainly because it is possible to live without it, the spleen has always been considered a secondary and mysterious organ. However, recent observations have revealed new unsuspected functions for this organ whose patho-physiological importance should be reconsidered. Much less known than the hypersplenism, the hyposplenism corresponds historically to the loss or the insufficiency of the two principal functions of spleen: the filtration of faded or senescent elements from the blood and the fight against infections. In this article, after a short recall of the physiological functions of spleen, three innovations relating to hyposplenism will be explored: the vascular complications, the loss of the splenic pool of regenerating monocytes and the loss of the splenic pool of pluripotent mesenchymal stem cell.
Resumo:
The distribution of three nuclear scaffold proteins (of which one is a component of a particular class of nuclear bodies) has been studied in intact K562 human erythroleukemia cells, isolated nuclei, and nuclear scaffolds. Nuclear scaffolds were obtained by extraction with the ionic detergent lithium diidosalicylate (LIS), using nuclei prepared in the absence of divalent cations (metal-depleted nuclei) and stabilized either by a brief heat exposure (20 min at 37C or 42C) or by Cu++ ions at 0C. Proteins were visualized by in situ immunocytochemistry and confocal microscopy. Only a 160-kD nuclear scaffold protein was unaffected by all the stabilization procedures performed on isolated nuclei. However, LIS extraction and scaffold preparation procedures markedly modified the distribution of the polypeptide seen in intact cells, unless stabilization had been performed by Cu++. In isolated nuclei, only Cu++ treatment preserved the original distribution of the two other antigens (M(r), 125 and 126 kD), whereas in heat-stabilized nuclei we detected dramatic changes. In nuclear scaffolds reacted with antibodies to 125 and 126-kD proteins, the fluorescent pattern was always disarranged regardless of the stabilization procedure. These results, obtained with nuclei prepared in the absence of Mg+2 ions, indicate that heat treatment per se can induce changes in the distribution of nuclear proteins, at variance with previous suggestions. Nevertheless, each of the proteins we have studied behaves in a different way, possibly because of its specific association with the nuclear scaffold.
Resumo:
The most widely used formula for estimating glomerular filtration rate (eGFR) in children is the Schwartz formula. It was revised in 2009 using iohexol clearances with measured GFR (mGFR) ranging between 15 and 75 ml/min × 1.73 m(2). Here we assessed the accuracy of the Schwartz formula using the inulin clearance (iGFR) method to evaluate its accuracy for children with less renal impairment comparing 551 iGFRs of 392 children with their Schwartz eGFRs. Serum creatinine was measured using the compensated Jaffe method. In order to find the best relationship between iGFR and eGFR, a linear quadratic regression model was fitted and a more accurate formula was derived. This quadratic formula was: 0.68 × (Height (cm)/serum creatinine (mg/dl))-0.0008 × (height (cm)/serum creatinine (mg/dl))(2)+0.48 × age (years)-(21.53 in males or 25.68 in females). This formula was validated using a split-half cross-validation technique and also externally validated with a new cohort of 127 children. Results show that the Schwartz formula is accurate until a height (Ht)/serum creatinine value of 251, corresponding to an iGFR of 103 ml/min × 1.73 m(2), but significantly unreliable for higher values. For an accuracy of 20 percent, the quadratic formula was significantly better than the Schwartz formula for all patients and for patients with a Ht/serum creatinine of 251 or greater. Thus, the new quadratic formula could replace the revised Schwartz formula, which is accurate for children with moderate renal failure but not for those with less renal impairment or hyperfiltration.
Resumo:
The criterion, based on the thermodynamics theory, that the climatic system tends to extremizesome function has suggested several studies. In particular, special attention has been devoted to the possibility that the climate reaches an extremal rate of planetary entropy production.Due to both radiative and material effects contribute to total planetary entropy production,climatic simulations obtained at the extremal rates of total, radiative or material entropy production appear to be of interest in order to elucidate which of the three extremal assumptions behaves more similar to current data. In the present paper, these results have been obtainedby applying a 2-dimensional (2-Dim) horizontal energy balance box-model, with a few independent variables (surface temperature, cloud-cover and material heat fluxes). In addition, climatic simulations for current conditions by assuming a fixed cloud-cover have been obtained. Finally,sensitivity analyses for both variable and fixed cloud models have been carried out
Resumo:
Summary : With regard to exercise metabolism, lactate was long considered as a dead-end waste product responsible for muscle fatigue and a limiting factor for motor performance. However, a large body of evidence clearly indicates that lactate is an energy efficient metabolite able to link the glycolytic pathway with aerobic metabolism and has endocrine-like actions, rather than to be a dead-end waste product. Lactate metabolism is also known to be quickly upregulated by regular endurance training and is thought to be related to exercise performance. However, to what extent its modulation can increase exercise performance in already endurance-trained subjects is unknown. The general hypothesis of this work was therefore that increasing either lactate metabolic clearance rate or lactate availability could, in turn, increase endurance performance. The first study (Study I) aimed at increasing the lactate clearance rate by means of assumed interaction effects of endurance training and hypoxia on lactate metabolism and endurance performance. Although this study did not demonstrate any interaction of training and hypoxia on both lactate metabolism and endurance performance, a significant deleterious effect of endurance training in hypoxia was shown on glucose homeostasis. The methods used to determine lactate kinetics during exercise exhibited some limitations, and the second study did delineate some of the issues raised (Study 2). The third study (Study 3) investigated the metabolic and performance effects of increasing plasma lactate production and availability during prolonged exercise in the fed state. A nutritional intervention was used for this purpose: part of glucose feedings ingested during the control condition was substituted by fructose. The results of this study showed a significant increase of lactate turnover rate, quantified the metabolic fate of fructose; and demonstrated a significant decrease of lipid oxidation and glycogen breakdown. In contrast, endurance performance appeared to be unmodified by this dietary intervention, being at odds with recent reports. Altogether the results of this thesis suggest that in endurance athletes the relationship between endurance performance and lactate turnover rate remains unclear. Nonetheless, the result of the present study raises questions and opens perspectives on the rationale of using hypoxia as a therapeutic aid for the treatment of insulin resistance. Moreover, the results of the second study open perspectives on the role of lactate as an intermediate metabolite and its modulatory effects on substrate metabolism during exercise. Additionally it is suggested that the simple nutritional intervention used in the third study can be of interest in the investigation on the aforementioned roles of lactate. Résumé : Lorsque le lactate est évoqué en rapport avec l'exercice, il est souvent considéré comme un déchet métabolique responsable de l'acidose métabolique, de la fatigue musculaire ou encore comme un facteur limitant de la performance. Or la littérature montre clairement que le lactate se révèle être plutôt un métabolite utilisé efficacement par de nombreux tissus par les voies oxydatives et, ainsi, il peut être considéré comme un lien entre le métabolisme glycolytique et le métabolisme oxydatif. De plus on lui prête des propriétés endocrines. Il est connu que l'entraînement d'endurance accroît rapidement le métabolisme du lactate, et il est suggéré que la performance d'endurance est liée à son métabolisme. Toutefois la relation entre le taux de renouvellement du lactate et la performance d'endurance est peu claire, et, de même, de quelle manière la modulation de son métabolisme peut influencer cette dernière. Le but de cette thèse était en conséquence d'investiguer de quelle manière et à quel degré l'augmentation du métabolisme du lactate, par l'augmentation de sa clearance et de son turnover, pouvait à son tour améliorer la performance d'endurance de sujets entraînés. L'objectif de la première étude a été d'augmenter la clearance du lactate par le biais d'un entraînement en conditions hypoxiques chez des cyclistes d'endurance. Basé sur la littérature scientifique existante, on a fait l'hypothèse que l'entraînement d'endurance et l'hypoxie exerceraient un effet synergétique sur le métabolisme du lactate et sur la performance, ce qui permettrait de montrer des relations entre performance et métabolisme du lactate. Les résultats de cette étude n'ont montré aucun effet synergique sur la performance ou le métabolisme du lactate. Toutefois, un effet délétère sur le métabolisme du glucose a été démontré. Quelques limitations de la méthode employée pour la mesure du métabolisme du lactate ont été soulevées, et partiellement résolues dans la seconde étude de ce travail, qui avait pour but d'évaluer la sensibilité du modèle pharmacodynamique utilisé pour le calcul du turnover du lactate. La troisième étude a investigué l'effet d'une augmentation de la lactatémie sur le métabolisme des substrats et sur la performance par une intervention nutritionnelle substituant une partie de glucose ingéré pendant l'exercice par du fructose. Les résultats montrent que les composants dynamiques du métabolisme du lactate sont significativement augmentés en présence de fructose, et que les oxydations de graisse et de glycogène sont significativement diminuées. Toutefois aucun effet sur la performance n'a été démontré. Les résultats de ces études montrent que la relation entre le métabolisme du lactate et la performance reste peu claire. Les résultats délétères de la première étude laissent envisager des pistes de travail, étant donné que l'entraînement en hypoxie est considéré comme outil thérapeutique dans le traitement de pathologies liées à la résistance à l'insuline. De plus les résultats de la troisième étude ouvrent des perspectives de travail quant au rôle du lactate comme intermédiaire métabolique durant l'exercice ainsi que sur ses effets directs sur le métabolisme. Ils suggèrent de plus que la manipulation nutritionnelle simple qui a été utilisée se révèle être un outil prometteur dans l'étude des rôles et effets métaboliques que peut revêtir le lactate durant l'exercice.
Resumo:
By means of confocal laser scanning microscopy and indirect fluorescence experiments we have examined the behavior of heat-shock protein 70 (HSP70) within the nucleus as well as of a nuclear matrix protein (M(r) = 125 kDa) during a prolonged heat-shock response (up to 24 h at 42 degrees C) in HeLa cells. In control cells HSP70 was mainly located in the cytoplasm. The protein translocated within the nucleus upon cell exposure to hyperthermia. The fluorescent pattern revealed by monoclonal antibody to HSP70 exhibited several changes during the 24-h-long incubation. The nuclear matrix protein showed changes in its location that were evident as early as 1 h after initiation of heat shock. After 7 h of treatment, the protein regained its original distribution. However, in the late stages of the hyperthermic treatment (17-24 h) the fluorescent pattern due to 125-kDa protein changed again and its original distribution was never observed again. These results show that HSP70 changes its localization within the nucleus conceivably because it is involved in solubilizing aggregated polypeptides present in different nuclear regions. Our data also strengthen the contention that proteins of the insoluble nucleoskeleton are involved in nuclear structure changes that occur during heat-shock response.
Resumo:
More knowledge on the reasons for refusal of the influenza vaccine in elderly patients is essential to target groups for additional information, and hence improve coverage rate. The objective of the present study was to describe precisely the true motives for refusal. All patients aged over 64 who attended the Medical Outpatient Clinic, University of Lausanne, or their private practitioner's office during the 1999 and 2000 vaccination periods were included. Each patient was informed on influenza and its complications, as well as on the need for vaccination, its efficacy and adverse events. The vaccination was then proposed. In case of refusal, the reasons were investigated with an open question. Out of 1398 patients, 148 (12%) refused the vaccination. The main reasons for refusal were the perception of being in good health (16%), of not being susceptible to influenza (15%), of not having had the influenza vaccine in the past (15%), of having had a bad experience either personally or a relative (15%), and the uselessness of the vaccine (10%). Seventeen percent gave miscellaneous reasons and 12% no reason at all for refusal. Little epidemiological knowledge and resistance to change appear to be the major obstacles for wide acceptance of the vaccine by the elderly.
Resumo:
OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.