968 resultados para Grid connected PV-plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel and accurate finite volume method has been presented to solve the shallow water equations on unstructured grid in plane geometry. In addition to the volume integrated average (VIA moment) for each mesh cell, the point values (PV moment) defined on cell boundary are also treated as the model variables. The volume integrated average is updated via a finite volume formulation, and thus is numerically conserved, while the point value is computed by a point-wise Riemann solver. The cell-wise local interpolation reconstruction is built based on both the VIA and the PV moments, which results in a scheme of almost third order accuracy. Efforts have also been made to formulate the source term of the bottom topography in a way to balance the numerical flux function to satisfy the so-called C-property. The proposed numerical model is validated by numerical tests in comparison with other methods reported in the literature. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel accurate numerical model for shallow water equations on sphere have been developed by implementing the high order multi-moment constrained finite volume (MCV) method on the icosahedral geodesic grid. High order reconstructions are conducted cell-wisely by making use of the point values as the unknowns distributed within each triangular cell element. The time evolution equations to update the unknowns are derived from a set of constrained conditions for two types of moments, i.e. the point values on the cell boundary edges and the cell-integrated average. The numerical conservation is rigorously guaranteed. in the present model, all unknowns or computational variables are point values and no numerical quadrature is involved, which particularly benefits the computational accuracy and efficiency in handling the spherical geometry, such as coordinate transformation and curved surface. Numerical formulations of third and fourth order accuracy are presented in detail. The proposed numerical model has been validated by widely used benchmark tests and competitive results are obtained. The present numerical framework provides a promising and practical base for further development of atmospheric and oceanic general circulation models. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

克隆植物被认为比非克隆植物更宜于利用异质性环境。在复杂的空间异质环境中,克隆植物可能形成了各种有效利用环境异质性的适应对策。对于克隆植物适应机制的研究,前人已做了大量的工作,特别是从形态和生物量分配等方面对简单异质生境下克隆植物的克隆整合和克隆分工进行了详细的研究。本研究以分布广泛的克隆植物东方草莓(Fragaria orientalis)作为研究对象,应用野外调查和实验生态学方法,采用多对比度单资源模型和不同向双资源模型,从形态和生理生态的角度,研究复杂异质生境下克隆植物的整合和分工及其耗益问题,分析不同类型的生境对克隆植物整合和分工的修饰作用,进而探讨克隆植物对异质生境的适应策略。克隆构型和分株种群特征是植物克隆生长及其生态适应对策研究的基本内容。本文通过野外调查,研究在不同光照条件下东方草莓克隆构型、分株种群特征以及点分布格局。结果表明:东方草莓的克隆构型随光照发生相应的变化,低光照下其匍匐茎节间长和分枝角度均增大而分枝强度减小;随光照减弱,东方草莓分株种群的生物量、根冠比和分株种群密度显著降低;不同光照下东方草莓分株均以随机分布为主但不同尺度下有所差异,其分布格局强度依次为旷地<林缘<林下。结合克隆植物对资源的利用对策,探讨了克隆构型和分株种群特征以及分布格局随环境条件变化的生态适应意义。不同生境斑块条件下克隆植物可能采取不同的适应对策。采用盆栽实验,研究不同水分对比度下克隆整合及其生理生态特征,并对单向和交互资源中东方草莓的克隆整合做了对比研究。结果显示:高的水分对比度能够促进东方草莓的克隆整合,并能刺激相连分株增加光合作用,东方草莓体内的氧化—抗氧化系统也II随对比度做出相应的反应。耗-益分析表明胁迫分株的受益是以供给分株的损耗为代价的,但从克隆片段总体来说是受益的。单向资源中东方草莓生长的绝对值高于交互资源,但耗-益分析表明生长于交互资源下东方草莓的克隆整合获益大于生长于单向资源下东方草莓的克隆整合获益。长期生长于特定生境的克隆植物,在进化过程中其克隆整合和克隆分工在对资源异质性的适应策略方面可能有所侧重。采用盆栽实验对来自不同海拔梯度的东方草莓的克隆整合和克隆分工对异质资源的适应对策进行了研究。实验结果表明,来自高海拔的东方草莓可塑性较差。来自两个海拔的东方草莓对切断匍匐茎的表现有所差异,总体上切断匍匐茎对来自高海拔的东方草莓影响更大些。另外,来自高海拔的东方草莓表现出更高的克隆分工。IIIClonal plants are known to be more suitable for the habitats of heterogeneousresources than nonclonal plants, perhaps due to their well developed adaptivestrategies to environmental heterogeneity. Many studies have been done on theadaptive mechanisms of clonal plants, especially on the clonal integration anddivision of labor with morphology and biomass allocation under simpleheterogeneous habitats. Based on field surveys, laboratory experiments, multi-contrastunidirectional resource model and reciprocal resource model, Fragaria orientalis, aRosaceae stoloniferous herb that widely distributes in China, was used to study thisplant’s morphological and physiological responses to complicated heterogeneoushabitats in terms of its clonal integration, division of labor and cost-benefit, as well astheir modifications by different habitats, so as to better understand the adaptivestrategies of clonal plants under heterogeneous environments.Clonal architecture and ramet population characteristics are of the major concernin the studies on growth and adaptive strategies of clonal plants. Clonal architecture,ramet population characteristics and spatial point pattern of F. orientalis underdifferent light intensity were studied with field observations. The results showed that,clonal architecture changed with light availability: Internode-lengths and branchangels of stolons were larger while branch intensities were smaller under lower lightintensity than those under higher light intensity; Biomass of ramet population,root-shoot ratio and density of ramet population decreased significantly with reduce oflight intensity; Under all light intensities, spatial pattern of ramets was mainlyrandomly distributed but it changed with different scales, with pattern intensity as:open space < forest edge < understory. Adaptation significance of the clonal architecture, the ramet population characteristics and the spatial pattern changing withdifferent environments was discussed according to these results.Clonal plants may take different adaptive strategies under different patches. Withpot culture, clonal integration and physiological parameters of F. orientalis underdifferent water contrasts were studied, and clonal integration under unilateralresources and reciprocal resources were also compared. The results suggested that,high water contrast improve the clonal integration of F. orientalis and increase thephotosynthesis of connected ramets. Oxidative and antioxidative system of F.orientalis also responded with changing water contrasts. According to cost-benefitanalysis, the drought-stressed ramets obtained benefits from the connectedwell-watered ramets, and as a whole, the clonal fragment could also get benefits.Growth of F. orientalis in homogeneous resources was better than that inheterogeneous resources, but the whole plant got more benefit through clonalintegration in heterogeneous resources than in homogeneous resources.Pot culture experiments were also used to study the adaptive strategies inutilizing heterogeneous resources by the plant populations from different altitudes.The results showed that, F. orientalis from alpine zones were shorter and lessexpanded with poorer clonal plasticity than those from middle mountains. F.orientalis from two different altitudes showed different responses to stolon severing,and as a whole, stolon severing had more influence on F. orientalis from alpine zones.In addition, F. orientalis from alpine zones exhibited higher division of labor, whichsuggested that clonal plants from different habitats develop their own adaptivemechanisms in their clonal integration and division of labor in response toenvironmental heterogeneity.