1000 resultados para Glass electrodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of hydrogen was studied at an activated platinum micro-electrode by cyclic voltammetry in the following ionic liquids: [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6.2.2.2][NTf2], [P-14.6.6.6][NTf2], [C(4)mim][OTf], [C(4)mim][BF4] [C(4)mim][PF6], [C(4)mim][NO3], [C(6)mim]Cl and [C(6)mim][FAP] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [N-6,N-2,N-2,N-2](+) = n-hexyltriethylammonium, [P-14,P-6,P-6,P-6](+) = tris(n-hexyltetradecyl) phosphonium, [NTf2](-) = bis(trifluoromethylsulfonyl)amide, [OTf] = trifluoromethlysulfonate and [FAP](-) = tris(perfluoroethyl)trifluorophosphate). Activation of the Pt electrode was necessary to obtain reliable and reproducible voltammetry. After activation of the electrode, the H-2 oxidation waves were nearly electrochemically and chemically reversible in [C(n)mim][NTf2] ionic liquids, chemically irreversible in [C(6)mim]Cl and [C(4)mim][NO3], and showed intermediate characteristics in OTf-, [BF4](-), [PF6](-), [FAP](-) and other [NTf2](-)-based ionic liquids. These differences reflect the contrasting interactions of protons with the respective RTIL anions. The oxidation peaks are reported relative to the half-wave potential of the cobaltocenium/cobaltocene redox couple in all ionic liquids studied, giving an indication of the relative proton interactions of each ionic liquid. A preliminary temperature study (ca. 298-333 K) has also been carried out in some of the ionic liquids. Diffusion coefficients and solubilities of hydrogen at 298 K were obtained from potential-step chronoamperometry, and there was no relationship found between the diffusion coefficients and solvent viscosity. RTILs possessing [NTf2](-) and [FAP](-) anions showed the highest micro-electrode peak currents for the oxidation in H-2 saturated solutions, with[C(4)mim][NTf2] toeing the most sensitive. The large number of available RTIL anion/cation pairs allows scope for the possible electrochemical detection of hydrogen gas for use in gas sensor technology. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltammetry and kinetics of the Ag vertical bar Ag+ system (commonly used as a reference electrode material in both protic/aprotic and RTIL solvents) was studied in the room-temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr][NTf2] on a 10 mu m diameter Pt electrode. For the three silver salts investigated (AgOTf, AgNTf2, and AgNO3, where OTf- = trifluoromethanesulfonate, NTf2- = bis(trifluoromethylsulfonyl)imide, and NO3- = nitrate), the voltammetry gave rise to a redox couple characteristic of a

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of dissolved hydrogen gas has been studied in a range of room-temperature ionic liquids (RTILs), namely [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6,N-2,N-2,N-2][NTf2], [P-14,P-6,P-6,P-6][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], [C(4)mim][OTf], and [C(6)mim]Cl on a platinum microdisk electrode of diameter 10 mu m. In all cases, except [C(6)mim]Cl, a broad quasi-electrochemically reversible oxidation peak between 0.3 to 1.3 V vs Ag was seen prior to electrode activation ([C(6)mim]Cl showed an almost irreversible wave). When the electrode was pre-anodized (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of bromide has been investigated by linear sweep and cyclic voltammetry at platinum electrodes in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, ([C(4)mim][NTf2]), and the conventional aprotic solvent. acetonitrile, (MeCN). Similar voltammetry was observed in both solvents, despite their viscosities differing by more than an order of magnitude. DigiSim(R) was employed to simulate the voltammetric response. The mechanism is believed to involve the direct oxidation of bromide to bromine in a heterogeneous step, followed by a homogenous reaction to form the tribromide anion: 2Br(-) --> Br-2 + 2e(-)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient approach to the simulation of the double potential step chronoamperometry at a microdisk electrode based on an exponentially expanding time grid and conformal mapping of the space is presented. The dimensionless second potential step flux data are included as a function of the first potential step duration and the ratio of the diffusion coefficients of the reacting species allowing instant analysis of the experimental double potential step chronoamperograms without a need for simulation. The values of the diffusion coefficients are determined for several test systems and found to be in good agreement with existing literature data. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronprobe microanalysis is now widely adopted in tephra studies as a technique for determining the major element geochemistry of individual glass shards. Accurate geochemical characterization is crucial for enabling robust tephra-based correlations; such information may also be used to link the tephra to a specific source and often to a particular eruption. In this article, we present major element analyses for rhyolitic natural glass standards analysed on three different microprobes and the new JEOL FEGSEM 6500F microprobe at Queen’s University Belfast. Despite the scatter in some elements, good comparability is demonstrated among data yielded from this new system, the previous Belfast JEOL-733 Superprobe, the JEOL-8200 Superprobe (Copenhagen) and the existing long-established microprobe facility in Edinburgh. Importantly, our results show that major elements analysed using different microprobes and variable operating conditions allow two high-silica glasses to be discriminated accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltammetry is reported for chlorine, Cl-2, dissolved in various room temperature ionic liquids using platinum microdisk electrodes. A single reductive voltammetric wave is seen and attributed to the two-electron reduction of chlorine to chloride. Studies of the effect of voltage scan rate reveal uniquely unusual behavior in which the magnitude of the currents decrease with increasing scan rates. A model for this is proposed and shown to indicate the presence of strongly adsorbed species in the electrode reaction mechanism, most likely chlorine atoms, Cl*((ads)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cathodic and anodic: potential limit of eleven different ionic liquids were determined at a mercury hemisphere electrode. Ionic liquids containing the phosphonium cation (tri(n-hexyl)tetradecylphosphonium, [P-14.6,P-6.6](+)) give the largest potential window, especially When Coupled to a trifluorotris(pentafluoroethyl)- [FAP](-). or bis(trifluoromethanesulfonyl)imide, [NTf2](-), anion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical oxidation of hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(4)mim][OTf], [C(4)dmim][NTf2], [C(4)mim][PF6],. [C(6)mim][FAP], and [P-14,P-6,P-6,P-6][FAP] (where [C-n mim](+) = 1-alkyl-3-methylimidazolium, [C(n)dmim](+) = 1-alkyl-2,3-dimethylimidazolium, [P-14,P-6,P-6,P-6](+) = tris(p-hexyl)-tetradecylphosphonium, [OTf](-) = trifluoromethlysulfonate, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [PF6](-) = hexafluorophosphate, and [FAP](-) = trifluorotris(pentafluoroethyl)phosphate). In four of the RTILs ([C(4)dmim][NTf2], [C(4)mim][PF6], [C(6)mim][FAP], and [P-14,P-6,P-6,P-6][FAP]), no clear oxidative signal was observed. In [C(4)mim][OTf], a chemically irreversible oxidation peak was observed on the oxidative sweep with no signal seen on the reverse scan. The oxidative signal showed an adsorptive stripping peak type followed by near steady-state limiting current behavior. Potential step chronoamperometry was carried out on the reductive wave, giving a diffusion coefficient and solubility of 1.6 x 10(-11) m(2) s(-1) and 7 mM, respectively (at 25 degrees C). Using these data, we modeled the oxidation signal kinetically, assuming adsorption preceded oxidation and that adsorption was approximately Langmuirian. The oxidation step was described by an electrochemically fully irreversible Tafel law/Butler-Volmer formalism. Modeling indicated a substantial buildup of H2S in the double layer in excess of the coverage that would be expected for a monolayer of chemisorbed H2S, reflecting high solubility of the gas in [C(4)mim][OTf] and possible attractive interactions with the [OTf](-) anions accumulated at the electrode at potentials positive of the potential of zero charge. Solute enrichment of the double layer in the solution adjacent to the electrode appears a novel feature of RTIL electrochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing interest in the application of electrode-based measurements for monitoring microbial processes in the Earth using biogeophysical methods. In this study, reactive electrode measurements were combined to electrical geophysical measurements during microbial sulfate reduction occurring in a column of silica beads saturated with natural river water. Electrodic potential (EP), self potential (SP) and complex conductivity signals were recorded using a dual electrode design (Ag/AgCl metal as sensing/EP electrode, Ag/AgCl metal in KCl gel as reference/SP electrode). Open-circuit potentials, representing the tendency for electrochemical reactions to occur on the electrode surfaces, were recorded between sensing/EP electrode and reference/SP electrode and showed significant spatiotemporal variability associated with microbial activity. The dual electrode design isolates the microbial driven sulfide reactions to the sensing electrode and permits removal of any SP signal from the EP measurement. Based on the known sensitivity of a Ag electrode to dissolved sulfide, we interpret EP signals exceeding 550 mV recorded in this experiment in terms of bisulfide (HS-) concentration near multiple sensing electrodes. Complex conductivity measurements capture an imaginary conductivity (s?) signal interpreted as the response of microbial growth and biomass formation in the column. Our results suggest that the implementation of multipurpose electrodes, combining reactive measurements with electrical geophysical measurements, could improve efforts to monitor microbial processes in the Earth using electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium his (trifluoromethanesulfonyl) imide [N-6.2.2.2][N(Tf)(2)], 1-butyl-3-methylimidazolium hexafluorosphosphate [C(4)mim] [PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C(4)mpyrr][N(Tf)(2)], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C-4mim][N(TF)(2)], N-butyl-N-methyl-pyrrolidinium dicyanamide [C(4)mpyrr][N(NC)(2)] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P-14,P-6,(6,6)][FAP] on a platinum microelectrode. In [N-6,N-2,N-2,N-2][NTf2] and [P-14,P-6,P-6.6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion. which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P-14,P-6,P-6.6[FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N-6,N-2,N-2,N-2],[NTF2] and [P-14,P-6,P-6.6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. (C) 2009 Elsevier B.V. All rights reserved.