946 resultados para Fresh Pond
Resumo:
The effect of modified atmosphere packaging (MAP) on the postharvest quality of fresh-cut watercress (Nasturtium officinale R. Br.) stored at 4 ºC for 7 d was studied. A portion of watercress was immediately analyzed (non-stored control) and the remaining fresh material was stored packaged under atmospheres enriched with N2, Ar, air, or vacuum. The analyzed parameters included colour, total soluble solids, pH, macronutrients, the individual profiles of sugars, organic acids, tocopherols and fatty acids, and total phenolics and flavonoids. Furthermore, four in vitro assays were performed to evaluate the antioxidant activity. After assessing the effect on individual quality parameters, it was possible to conclude that air was the less efficient atmosphere in preserving quality attributes of the non-stored control samples during cold storage. In turn, Ar-enriched MAP was the most suitable choice to preserve the overall postharvest quality. The present study also highlighted the nutritional and antioxidant properties of watercress, as well as the interest of its inclusion in human diets.
Resumo:
The suitability of gamma irradiation (1, 2 and 5kGy) for preserving quality parameters of fresh-cut watercress (Nasturtium officinale R. Br.) during storage at 4±1°C for 7d was investigated. The storage time decreased the protein content and the main carbohydrates, and increased the levels of malic and fumaric acids, sucrose and mono- and polyunsaturated fatty acids (MUFA and PUFA). The different irradiation doses did not caused any significant colour change. In general, the 2kGy dose favoured PUFA and was the most suitable to preserve the overall postharvest quality of fresh-cut watercress during cold storage. In turn, the 5kGy dose better preserved the antioxidant activity and total flavonoids and favoured MUFA, tocopherols and total phenolics, thus originating a final product with enhanced functional properties. Therefore, the suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage was demonstrated.
Resumo:
Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia - UL
Resumo:
Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia - UL
Resumo:
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl-] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.
Resumo:
The effect of size-grading of juveniles prior to stocking, as well as selective harvesting, on the population structure of pond-raised Macrobrachium amazonicum was studied. A randomized-complete-blocks design with 4 treatments and 3 replicates was used. The treatments were: upper size-graded juveniles, lower size-graded juveniles, ungraded juveniles (traditional), and ungraded juveniles with selective harvesting. Twelve 0.01 ha earthen ponds were stocked at 40 juveniles m(-2), according to the relevant treatment. Every three weeks, random samples from each pond were obtained for biometry, and after 3.5 months, the ponds were drained and completely harvested. Animals were then counted, weighed, and sexed; males were sorted as Translucent Claw (TC), Cinnamon Claw (CC), Green Claw 1 (GC1), and Green Claw 2 (GC2), and females as Virgin (VF), Berried (BE), and Open (OF). The prawns developed rapidly in the ponds. attaining maturity and differentiating into male morphotypes after about 2 months in all treatments. The fast-growing juveniles (upper grading fraction) mostly did not constitute the dominant males (CC] and GC2) in the adult population. Population development was slower in ponds stocked with Lower prawns, whereas selective harvesting increased the frequency of GC1 and reduced the final mean weight of GC2 males. The proportion of males increased throughout the culture period, but was generally not affected by the stocking or harvesting strategies. Grading juveniles and selective harvesting slightly altered the population dynamics and structure, although the general population development showed similar patterns in ponds stocked with upper, lower, and ungraded juveniles, or selectively harvested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
O presente estudo foi realizado durante um ano em viveiro de produção de peixes, com a finalidade de avaliar o efeito da qualidade da água na comunidade planctônica em função do manejo adotado. Maiores densidades de Euglenophyceae, Chlorophyceae e Cyanobacteria estiveram associadas aos elevados teores de nitrato (1 a 210 mg.L-1). Densidades de Cyanobacteria acima de 90 ind.m³ × 10³ (85,5%) ocorreram quando as concentrações de nitrato estiveram ao redor de 210 mg.L-1, fósforo total menor que 106 mg.L-1 e temperatura acima de 25 °C. Elevada densidade de Rotifera também esteve associada às altas densidades de Cyanobacteria (dezembro). Dentre os organismos zooplanctônicos, os Rotifera foram os mais abundantes e somente Trichocerca sp. foi constante em todos os pontos amostrados. Dentre os Cladocera, a espécie mais representativa foi Diaphanosoma birgei, variando de 4 a 342 ind.L-1 (0,7 e 2,4%) durante o período de estudo. Os resultados mostram que qualidade da água e o manejo empregado neste viveiro apresentaram influência direta na população planctônica, em função da baixa profundidade e constante carga de nutrientes que são incorporados no viveiro por meio de alimentos, fertilizantes e fezes de peixes, que contribuem para o aparecimento de organismos planctônicos não desejáveis.
Resumo:
Scarcity of freshwater due to recurrent drought threatens the sustainable crop production in semi-arid regions of Ethiopia. Deficit irrigation is thought to be one of the promising strategies to increase water use efficiency (WUE) under scarce water resources. A study was carried out to investigate the effect of alternate furrow irrigation (AFI), deficit irrigation (DI) and full irrigation (FI) on marketable fruit yield, WUE and physio-chemical quality of four fresh-market tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) in 2013 and 2014. The results showed that marketable yield, numbers of fruits per plant and fruit size were not significantly affected by AFI and DI irrigations. WUE under AFI and DI increased by 36.7% and 26.1%, respectively with close to 30% irrigation water savings achieved. A different response of cultivars to irrigation treatments was found for marketable yield, number of fruits and fruit size, WUE, total soluble solids (TSS) of the fruit juice, titratable acids (TA) and skin thickness. Cochoro and Fetan performed well under both deficit irrigation treatments exhibited by bigger fruit size which led to higher WUE. ARP Tomato d2 showed good yields under well-watered conditions. Chali had consistently lower marketable fruit yield and WUE. TSS and TA tended to increase under deficit irrigation; however, the overall variations were more explained by irrigation treatments than by cultivars. It was shown that AFI is a suitable deficit irrigation practice to increase fresh yield, WUE and quality of tomato in areas with low water availability. However, AFI requires suitable cultivars in order to exploit its water saving potential.
Resumo:
Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) to moderate water deficit induced by alternate furrow irrigation (AFI) and deficit irrigation (DI) under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s) was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’), relative water content (RWC) and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE), g_s, chlorophyll content (Chl_SPAD), normal difference vegetation index (NDVI), leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.
Resumo:
Fresh water wetlands on Hilton Head Island have experienced significant degradation over the past few decades. Fifty per cent of the original fresh water wetlands on the island have been either completely destroyed or significantly altered. This fact, plus the declining water levels experienced periodically, have caused much concern over the importance of the wetlands. A major question concerned the role of the wetlands in the recharge of the local ground water aquifer. The present study was undertaken in order to evaluate the potential of the wetlands for water table recharge.
Resumo:
This powerpoint presentation discusses sediments in 18 sample ponds in Myrtle Beach, Charleston and Hilton Head. It attempts to answer the questions: How contaminated are bottom sediments in typical coastal stormwater ponds? and Do these contaminant levels have the potential to pose ecological and human health risks? Charts of findings are included.
Resumo:
A workbook-style reflection exercise prompts readers to consider potential uses of hip-hop in their own library instruction in a culturally responsive manner.
Resumo:
Concert Program
Resumo:
Abstract : Recently, there is a great interest to study the flow characteristics of suspensions in different environmental and industrial applications, such as snow avalanches, debris flows, hydrotransport systems, and material casting processes. Regarding rheological aspects, the majority of these suspensions, such as fresh concrete, behave mostly as non-Newtonian fluids. Concrete is the most widely used construction material in the world. Due to the limitations that exist in terms of workability and formwork filling abilities of normal concrete, a new class of concrete that is able to flow under its own weight, especially through narrow gaps in the congested areas of the formwork was developed. Accordingly, self-consolidating concrete (SCC) is a novel construction material that is gaining market acceptance in various applications. Higher fluidity characteristics of SCC enable it to be used in a number of special applications, such as densely reinforced sections. However, higher flowability of SCC makes it more sensitive to segregation of coarse particles during flow (i.e., dynamic segregation) and thereafter at rest (i.e., static segregation). Dynamic segregation can increase when SCC flows over a long distance or in the presence of obstacles. Therefore, there is always a need to establish a trade-off between the flowability, passing ability, and stability properties of SCC suspensions. This should be taken into consideration to design the casting process and the mixture proportioning of SCC. This is called “workability design” of SCC. An efficient and non-expensive workability design approach consists of the prediction and optimization of the workability of the concrete mixtures for the selected construction processes, such as transportation, pumping, casting, compaction, and finishing. Indeed, the mixture proportioning of SCC should ensure the construction quality demands, such as demanded levels of flowability, passing ability, filling ability, and stability (dynamic and static). This is necessary to develop some theoretical tools to assess under what conditions the construction quality demands are satisfied. Accordingly, this thesis is dedicated to carry out analytical and numerical simulations to predict flow performance of SCC under different casting processes, such as pumping and tremie applications, or casting using buckets. The L-Box and T-Box set-ups can evaluate flow performance properties of SCC (e.g., flowability, passing ability, filling ability, shear-induced and gravitational dynamic segregation) in casting process of wall and beam elements. The specific objective of the study consists of relating numerical results of flow simulation of SCC in L-Box and T-Box test set-ups, reported in this thesis, to the flow performance properties of SCC during casting. Accordingly, the SCC is modeled as a heterogeneous material. Furthermore, an analytical model is proposed to predict flow performance of SCC in L-Box set-up using the Dam Break Theory. On the other hand, results of the numerical simulation of SCC casting in a reinforced beam are verified by experimental free surface profiles. The results of numerical simulations of SCC casting (modeled as a single homogeneous fluid), are used to determine the critical zones corresponding to the higher risks of segregation and blocking. The effects of rheological parameters, density, particle contents, distribution of reinforcing bars, and particle-bar interactions on flow performance of SCC are evaluated using CFD simulations of SCC flow in L-Box and T-box test set-ups (modeled as a heterogeneous material). Two new approaches are proposed to classify the SCC mixtures based on filling ability and performability properties, as a contribution of flowability, passing ability, and dynamic stability of SCC.