991 resultados para Fluorescent indicator proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During different forms of neurodegenerative diseases, including the retinal degeneration, several cell cycle proteins are expressed in the dying neurons from Drosophila to human revealing that these proteins are a hallmark of neuronal degeneration. This is true for animal models of Alzheimer's, and Parkinson's diseases, Amyotrophic Lateral Sclerosis and for Retinitis Pigmentosa as well as for acute injuries such as stroke and light damage. Longitudinal investigation and loss-of-function studies attest that cell cycle proteins participate to the process of cell death although with different impacts, depending on the disease. In the retina, inhibition of cell cycle protein action can result to massive protection. Nonetheless, the dissection of the molecular mechanisms of neuronal cell death is necessary to develop adapted therapeutic tools to efficiently protect photoreceptors as well as other neuron types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED: NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4(+) T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV vaccine vector. IMPORTANCE: NYVAC is a replication-deficient poxvirus developed as a vaccine vector against HIV. NYVAC expresses several genes known to impair the host immune defenses by interfering with innate immune receptors, cytokines, or interferons. Given the crucial role played by interferons against viruses, we postulated that targeting the type I and type II decoy receptors used by poxvirus to subvert the host innate immune response would be an attractive approach to improve the immunogenicity of NYVAC vectors. Using systems biology approaches, we report that deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus resulted in the robust expression of type I IFNs and interferon-stimulated genes (ISGs), a strong activation of the inflammasome, and upregulated expression of IL-1β and proinflammatory cytokines. Dual deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus improves its immunogenic profile and makes it an attractive candidate HIV vaccine vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Podocytes are essential for the function of the kidney glomerular filter. A highly differentiated cytoskeleton is requisite for their integrity. Although much knowledge has been gained on the organization of cortical actin networks in podocyte's foot processes, less is known about the molecular organization of the microtubular cytoskeleton in primary processes and the cell body. To gain an insight into the organization of the microtubular cytoskeleton of the podocyte, we systematically analyzed the expression of microtubule associated proteins (Maps), a family of microtubules interacting proteins with known functions as regulator, scaffold and guidance proteins. We identified microtubule associated protein 1b (MAP1B) to be specifically enriched in podocytes in human and rodent kidney. Using immunogold labeling in electron microscopy, we were able to demonstrate an enrichment of MAP1B in primary processes. A similar association of MAP1B with the microtubule cytoskeleton was detected in cultured podocytes. Subcellular distribution of MAP1B HC and LC1 was analyzed using a double fluorescent reporter MAP1B fusion protein. Subsequently we analyzed mice constitutively depleted of MAP1B. Interestingly, MAP1B KO was not associated with any functional or structural alterations pointing towards a redundancy of MAP proteins in podocytes. In summary, we established MAP1B as a specific marker protein of the podocyte microtubular cytoskeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-testicular sperm maturation occurs in the epididymis. The ion concentration and proteins secreted into the epididymal lumen, together with testicular factors, are believed to be responsible for the maturation of spermatozoa. Disruption of the maturation of spermatozoa in the epididymis provides a promising strategy for generating a male contraceptive. However, little is known about the proteins involved. For drug development, it is also essential to have tools to study the function of these proteins in vitro. One approach for screening novel targets is to study the secretory products of the epididymis or the G protein-coupled receptors (GPCRs) that are involved in the maturation process of the spermatozoa. The modified Ca2+ imaging technique to monitor release from PC12 pheochromocytoma cells can also be applied to monitor secretory products involved in the maturational processes of spermatozoa. PC12 pheochromocytoma cells were chosen for evaluation of this technique as they release catecholamines from their cell body, thus behaving like endocrine secretory cells. The results of the study demonstrate that depolarisation of nerve growth factor -differentiated PC12 cells releases factors which activate nearby randomly distributed HEL erythroleukemia cells. Thus, during the release process, the ligands reach concentrations high enough to activate receptors even in cells some distance from the release site. This suggests that communication between randomly dispersed cells is possible even if the actual quantities of transmitter released are extremely small. The development of a novel method to analyse GPCR-dependent Ca2+ signalling in living slices of mouse caput epididymis is an additional tool for screening for drug targets. By this technique it was possible to analyse functional GPCRs in the epithelial cells of the ductus epididymis. The results revealed that, both P2X- and P2Y-type purinergic receptors are responsible for the rapid and transient Ca2+ signal detected in the epithelial cells of caput epididymides. Immunohistochemical and reverse transcriptase-polymerase chain reaction (RTPCR) analyses showed the expression of at least P2X1, P2X2, P2X4 and P2X7, and P2Y1 and P2Y2 receptors in the epididymis. Searching for epididymis-specific promoters for transgene delivery into the epididymis is of key importance for the development of specific models for drug development. We used EGFP as the reporter gene to identify proper promoters to deliver transgenes into the epithelial cells of the mouse epididymis in vivo. Our results revealed that the 5.0 kb murine Glutathione peroxidase 5 (GPX5) promoter can be used to target transgene expression into the epididymis while the 3.8 kb Cysteine-rich secretory protein-1 (CRISP-1) promoter can be used to target transgene expression into the testis. Although the visualisation of EGFP in living cells in culture usually poses few problems, the detection of EGFP in tissue sections can be more difficult because soluble EGFP molecules can be lost if the cell membrane is damaged by freezing, sectioning, or permeabilisation. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilise EGFP may also destroy its usefulness as a fluorescent reporter. We therefore developed a novel tissue preparation and preservation techniques for EGFP. In addition, fluorescence spectrophotometry with epididymal epithelial cells in suspension revealed the expression of functional purinergic, adrenergic, cholinergic and bradykinin receptors in these cell lines (mE-Cap27 and mE-Cap28). In conclusion, we developed new tools for studying the role of the epididymis in sperm maturation. We developed a new technique to analyse GPCR dependent Ca2+ signalling in living slices of mouse caput epididymis. In addition, we improved the method of detecting reporter gene expression. Furthermore, we characterised two epididymis-specific gene promoters, analysed the expression of GPCRs in epididymal epithelial cells and developed a novel technique for measurement of secretion from cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les bactéries du genre Pseudomonas ont la capacité étonnante de s'adapter à différents habitats et d'y survivre, ce qui leur a permis de conquérir un large éventail de niches écologiques et d'interagir avec différents organismes hôte. Les espèces du groupe Pseudomonas fluorescens peuvent être facilement isolées de la rhizosphère et sont communément connues comme des Pseudomonas bénéfiques pour les plantes. Elles sont capables d'induire la résistance systémique des plantes, d'induire leur croissance et de contrer des phytopathogènes du sol. Un sous-groupe de ces Pseudomonas a de plus développé la capacité d'infecter et de tuer certaines espèces d'insectes. Approfondir les connaissances sur l'interaction de ces bactéries avec les insectes pourraient conduire au développement de nouveaux biopesticides pour la protection des cultures. Le but de cette thèse est donc de mieux comprendre la base moléculaire, l'évolution et la régulation de la pathogénicité des Pseudomonas plante-bénéfiques envers les insectes. Plus spécifiquement, ce travail a été orienté sur l'étude de la production de la toxine insecticide appelée Fit et sur l'indentification d'autres facteurs de virulence participant à la toxicité de la bactérie envers les insectes. Dans la première partie de ce travail, la régulation de la production de la toxine Fit a été évaluée par microscopie à épifluorescence en utilisant des souches rapportrices de Pseudomonas protegens CHA0 qui expriment la toxine insecticide fusionnée à une protéine fluorescente rouge, au site natif du gène de la toxine. Celle-ci a été détectée uniquement dans l'hémolymphe des insectes et pas sur les racines des plantes, ni dans les milieux de laboratoire standards, indiquant une production dépendante de l'hôte. L'activation de la production de la toxine est contrôlée par trois protéines régulatrices dont l'histidine kinase FitF, essentielle pour un contrôle précis de l'expression et possédant un domaine "senseur" similaire à celui de la kinase DctB qui régule l'absorption de carbone chez les Protéobactéries. Il est donc probable que, durant l'évolution de FitF, un réarrangement de ce domaine "senseur" largement répandu ait contribué à une production hôte-spécifique de la toxine. Les résultats de cette étude suggèrent aussi que l'expression de la toxine Fit est plutôt réprimée en présence de composés dérivés des plantes qu'induite par la perception d'un signal d'insecte spécifique. Dans la deuxième partie de ce travail, des souches mutantes ciblant des facteurs de virulence importants identifiés dans des pathogènes connus ont été générées, dans le but d'identifier ceux avec une virulence envers les insectes atténuée. Les résultats ont suggéré que l'antigène O du lipopolysaccharide (LPS) et le système régulateur à deux composantes PhoP/PhoQ contribuent significativement à la virulence de P. protegens CHA0. La base génétique de la biosynthèse de l'antigène O dans les Pseudomonas plante-bénéfiques et avec une activité insecticide a été élucidée et a révélé des différences considérables entre les lignées suite à des pertes de gènes ou des acquisitions de gènes par transfert horizontal durant l'évolution de certaines souches. Les chaînes latérales du LPS ont été montrées comme vitales pour une infection des insectes réussie par la souche CHA0, après ingestion ou injection. Les Pseudomonas plante-bénéfiques, avec une activité insecticide sont naturellement résistants à la polymyxine B, un peptide antimicrobien modèle. La protection contre ce composé antimicrobien particulier dépend de la présence de l'antigène O et de la modification du lipide A, une partie du LPS, avec du 4-aminoarabinose. Comme les peptides antimicrobiens cationiques jouent un rôle important dans le système immunitaire des insectes, l'antigène O pourrait être important chez les Pseudomonas insecticides pour surmonter les mécanismes de défense de l'hôte. Le système PhoP/PhoQ, connu pour contrôler les modifications du lipide A chez plusieurs bactéries pathogènes, a été identifié chez Pseudomonas chlororaphis PCL1391 et P. protegens CHA0. Pour l'instant, il n'y a pas d'évidence que des modifications du lipide A contribuent à la pathogénicité de cette bactérie envers les insectes. Cependant, le senseur-kinase PhoQ est requis pour une virulence optimale de la souche CHA0, ce qui suggère qu'il régule aussi l'expression des facteurs de virulence de cette bactérie. Les découvertes de cette thèse démontrent que certains Pseudomonas associés aux plantes sont de véritables pathogènes d'insectes et donnent quelques indices sur l'évolution de ces microbes pour survivre dans l'insecte-hôte et éventuellement le tuer. Les résultats suggèrent également qu'une recherche plus approfondie est nécessaire pour comprendre comment ces bactéries sont capables de contourner ou surmonter la réponse immunitaire de l'hôte et de briser les barrières physiques pour envahir l'insecte lors d'une infection orale. Pour cela, les futures études ne devraient pas uniquement se concentrer sur le côté bactérien de l'interaction hôte-microbe, mais aussi étudier l'infection du point de vue de l'hôte. Les connaissances gagnées sur la pathogénicité envers les insectes des Pseudomonas plante-bénéfiques donnent un espoir pour une future application en agriculture, pour protéger les plantes, non seulement contre les maladies, mais aussi contre les insectes ravageurs. -- Pseudomonas bacteria have the astonishing ability to survive within and adapt to different habitats, which has allowed them to conquer a wide range of ecological niches and to interact with different host organisms. Species of the Pseudomonas fluorescens group can readily be isolated from plant roots and are commonly known as plant-beneficial pseudomonads. They are capable of promoting plant growth, inducing systemic resistance in the plant host and antagonizing soil-borne phytopathogens. A defined subgroup of these pseudomonads evolved in addition the ability to infect and kill certain insect species. Profound knowledge about the interaction of these particular bacteria with insects could lead to the development of novel biopesticides for crop protection. This thesis thus aimed at a better understanding of the molecular basis, evolution and regulation of insect pathogenicity in plant-beneficial pseudomonads. More specifically, it was outlined to investigate the production of an insecticidal toxin termed Fit and to identify additional factors contributing to the entomopathogenicity of the bacteria. In the first part of this work, the regulation of Fit toxin production was probed by epifluorescence microscopy using reporter strains of Pseudomonas protegens CHAO that express a fusion between the insecticidal toxin and a red fluorescent protein in place of the native toxin gene. The bacterium was found to express its insecticidal toxin only in insect hemolymph but not on plant roots or in common laboratory media. The host-dependent activation of Fit toxin production is controlled by three local regulatory proteins. The histidine kinase of this regulatory system, FitF, is essential for the tight control of toxin expression and shares a sensing domain with DctB, a sensor kinase regulating carbon uptake in Proteobacteria. It is therefore likely that shuffling of a ubiquitous sensor domain during the evolution of FitF contributed to host- specific production of the Fit toxin. Findings of this study additionally suggest that host-specific expression of the Fit toxin is mainly achieved by repression in the presence of plant-derived compounds rather than by induction upon perceiving an insect-specific signal molecule. In the second part of this thesis, mutant strains were generated that lack factors previously shown to be important for virulence in prominent pathogens. A screening for attenuation in insect virulence suggested that lipopolysaccharide (LPS) O-antigen and the PhoP-PhoQ two-component regulatory system significantly contribute to virulence of P. protegens CHAO. The genetic basis of O-antigen biosynthesis in plant-beneficial pseudomonads displaying insect pathogenicity was elucidated and revealed extensive differences between lineages due to reduction and horizontal acquisition of gene clusters during the evolution of several strains. Specific 0 side chains of LPS were found to be vital for strain CHAO to successfully infect insects by ingestion or upon injection. Insecticidal pseudomonads with plant-beneficial properties were observed to be naturally resistant to polymyxin B, a model antimicrobial peptide. Protection against this particular antimicrobial compound was dependent on the presence of O-antigen and modification of the lipid A portion of LPS with 4-aminoarabinose. Since cationic antimicrobial peptides play a major role in the immune system of insects, O-antigenic polysaccharides could be important for insecticidal pseudomonads to overcome host defense mechanisms. The PhoP-PhoQ system, which is well-known to control lipid A modifications in several pathogenic bacteria, was identified in Pseudomonas chlororaphis PCL1391 and P. protegens CHAO. No evidence was found so far that lipid A modifications contribute to insect pathogenicity in this bacterium. However, the sensor kinase PhoQ was required for full virulence of strain CHAO suggesting that it additionally regulates the expression of virulence factors in this bacterium. The findings of this thesis demonstrate that certain plant-associated pseudomonads are true insect pathogens and give some insights into how these microbes evolved to survive within and eventually kill the insect host. Results however also point out that more in-depth research is needed to know how exactly these fascinating bacteria manage to bypass or overcome host immune responses and to breach physical barriers to invade insects upon oral infection. To achieve this, future studies should not only focus on the bacterial side of the microbe-host interactions but also investigate the infection from a host-oriented view. The knowledge gained about the entomopathogenicity of plant-beneficial pseudomonads gives hope for their future application in agriculture to protect plants not only against plant diseases but also against insect pests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofilament proteins (NFs) are the major components of the intermediate filaments of the neuronal cytoskeleton. The three different NF proteins; the low (NF-L), medium (NF-M),and dendrites.NF proteins play an important role in neuronal development, and plasticity,and seem to contribute to the pathophysiology of several diseases. However, the detailed expression patterns of NF proteins in the course of postnatal aturation, and in response to seizures in the rat have remained unknown. In this work, I have studied the developmental expression and cellular distribution of the three NF proteins in the rat hippocampus during the postnatal development. The reactivity of NF proteins in response to kainic acid (KA)-induced status epilepticus (SE)was studied in the hippocampus of 9-day-old rats, and using in vitro organotypic hippocampal slices cultures prepared from P6-7 rats. The results showed that NF-L and NF-M proteins are expressed already at the postnatal day 1, while the expression of NF-H mainly occurred during the second postnatal week. The immunoreactivity of NF proteins varied depending on the cell type and sub-cellular location in the hippocampus. In adult rats, KA-induced SE typically results in severe and permanent NF degradation. However, in our P9 rats KA-induced SE resulted in a transient increase in the expression of NF proteins during the first few hours but not degradation. No neuronal death or mossy fiber sprouting was observed at any time after SE. The in vitro studies with OHCs, which mimick the in vivo developing models where a local injection of KA is applied(e.g. intrahippocampal), indicated that NF proteins were rapidly degraded in response to KA treatment, this effect being effectively inhibited by the treatment with the AMPA receptor antagonist CNQX, and calpain inhibitor MDL-28170. These compounds also significantly ameliorated the KA-induced region-specific neuronal damage. The NMDA receptor antagonist and the L-type Ca2+ channel blocker did not have any significant effect. In conclusion, the results indicate that the developmental expression of NF in the rat hippocampus is differentially regulated and targeted in the different hippocampal cell types during the postnatal development. Furthermore, despite SE, the mechanisms leading to NF degradation and neuronal death are not activated in P9 rats unlike in adults. The reason for this remains unknown. The results in organotypic hippocampal cultures confirm the validity of this in vitro model to study development processes, and to perform pharmacological studies. The results also suggest that calpain proteases as interesting pharmacological targets to reduce neuronal damage after acute excitotoxic insults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present results of studies conducted by the Research Unit of Legal Psychiatry and Psychology of Lausanne about risk assessment and protective factors in the evaluation of violence recidivism. It aims to help experts in considering the relevance and use of tools at their disposal. Particular attention is given to the significance of protective factors and impulsive dimensions, as to the inter-raters process that leads to the final deliberations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adequate selection of indicator groups of biodiversity is an important aspect of the systematic conservation planning. However, these assessments differ in the spatial scale, in the methods used and in the groups considered to accomplish this task, which generally produces contradictory results. The quantification of the spatial congruence between species richness and complementarity among different taxonomic groups is a fundamental step to identify potential indicator groups. Using a constructive approach, the main purposes of this study were to evaluate the performance and efficiency of eight potential indicator groups representing amphibian diversity in the Brazilian Atlantic Forest. Data on the geographic range of amphibian species that occur in the Brazilian Atlantic Forest was overlapped to the full geographic extent of the biome, which was divided into a regular equal-area grid. Optimization routines based on the concept of complementarily were applied to verify the performance of each indicator group selected in relation to the representativeness of the amphibians in the Brazilian Atlantic Forest as a whole, which were solved by the algorithm"simulated annealing", through the use of the software MARXAN. Some indicator groups were substantially more effective than others in regards to the representation of the taxonomic groups assessed, which was confirmed by the high significance of data (F = 312.76; p < 0.01). Leiuperidae was considered as the best indicator group among the families analyzed, as it showed a good performance, representing 71% of amphibian species in the Brazilian Atlantic Forest (i.e. 290 species), which may be associated with the diffuse geographic distribution of its species. This study promotes understanding of how the diversity standards of amphibians can be informative for systematic conservation planning on a regional scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but, instead, a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion and crossover during cell-cell and cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo Receptor complex and that their migration is blocked by Myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over Myelin. Our data relate the absence of traction force of OEC with lower migratory capacity, which correlates with changes in the F-Actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo Receptor inhibitor NEP1-40.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses that are central to their interaction with their environment and to communication between individuals. Understanding the molecular bases of insect olfaction is therefore of great importance from both a basic and applied perspective. Odorant binding proteins (OBPs) are some of most abundant proteins found in insect olfactory organs, where they are the first component of the olfactory transduction cascade, carrying odorant molecules to the olfactory receptors. We carried out a search for OBPs in the genome of the parasitoid wasp Nasonia vitripennis and identified 90 sequences encoding putative OBPs. This is the largest OBP family so far reported in insects. We report unique features of the N. vitripennis OBPs, including the presence and evolutionary origin of a new subfamily of double-domain OBPs (consisting of two concatenated OBP domains), the loss of conserved cysteine residues and the expression of pseudogenes. This study also demonstrates the extremely dynamic evolution of the insect OBP family: (i) the number of different OBPs can vary greatly between species; (ii) the sequences are highly diverse, sometimes as a result of positive selection pressure with even the canonical cysteines being lost; (iii) new lineage specific domain arrangements can arise, such as the double domain OBP subfamily of wasps and mosquitoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma is one of the most aggressive types of skin cancer and its incidence rate is still increasing. All existing treatments are minimally effective. Consequently, new therapeutic agents for melanoma treatment should be developed. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and anti-metastatic properties. The aim of this study was to evaluate the different signaling pathways involved in the cytotoxic effect of DM-1 on melanoma cells. The apoptotic process and cytoskeletal changes were evaluated by immunoblotting and immunofluorescence, respectively, in melanoma cells. After DM-1 treatment, SK-MEL-5 melanoma cells showed actin filament disorganization with spicule formation throughout the cytoskeleton and significant reduction of focal adhesion as well as they were present only at cell extremities, conferring a poor connection between the cell and the substrate. Besides this, there was significant filopodium retraction and loss of typical cytoskeleton scaffold. These modifications contributed to cell detachment followed by cell death. Furthermore, DM-1-induced apoptosis was triggered by multiple Bcl-2 proteins involved in both the extrinsic and the intrinsic apoptotic pathways. SK-MEL-5 cells showed a death mechanism mainly by Bcl-2/Bax ratio decrease, whereas A375 cells presented apoptosis induction by Mcl-1 and Bcl-xL downregulation. In SK-MEL-5 and A375 melanoma cells, there was a significant increase in the active form of caspase 9, and the inactive form of the effector caspase 3 was decreased in both cell lines. Expression of cleaved poly ADP ribose polymerase was increased after DM-1 treatment in these melanoma cell lines, demonstrating that the apoptotic process occurred. Altogether, these data elucidate the cellular and molecular mechanisms involved in the cytotoxicity induced by the antitumor agent DM-1 in melanoma cells.