943 resultados para Fibrolytic enzyme
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Angiotensin-converting enzyme (EC3.4.15. I; ACE), isa membrane-bounddipeptidyl carboxypeptidase that mediates the cleavage of the C-terminal dipeptide His-Leu of the decapeptide angiotensin, generating the most powerful endogenous vaso-constricting angiotensin.
Some ACE inhibitors, such as Captopril, have been used as anti-hypertensive drugs. Moreover in recent years, large quantities of ACE inhibitors have been identijied and isolated from peptides derivedfrom food material such as casein, soy protein, jish protein and so on. Functional food with hypotensive effect has been developed on the basis of these works.
Typicalprocedures for screening hypotensive peptides offood origins are separationof products of peptic and tryptic digestion of proteins followed by inhibitory activitydetermination of each fraction. A method developed by Cushman has been the mostwidely used, in which ACE activity is determined by the amount of hippuric acid
generated as a product of enzymatic reaction of ACE with tripeptide of hippuryl-Lhistidyl-L-leucine. Hippuric acid is determined spectrophotometrically at 228 nm after its isolation from the reaction system by ethylacetate extraction, which not only requires alarge quantity of reagent but also results in large error.
An improved method based on Cushman ’s method is proposed in this paper. In this method, an enzymatic reaction system is based on Cushman’s method, while isolation and determination of hippuric acid is performed by medium perjormance gel chromatography on a Toyopearl HW-40s column. Due to the size exclusion nature of the column with somewhat hydrophobic properties, complete separation of four existing fractions in the reaction system is obtained within a smallfraction of the time necessary in Cushman’s method, with ideal reproducibility.
Resumo:
Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The application of ultrasound to a solution can induce cavitional phenomena and generate high localised temperatures and pressures. These are dependent of the frequency used and have enabled ultrasound application in areas such as synthetic, green and food chemistry. High frequency (100 kHz to 1 MHz) in particular is promising in food chemistry as a means to inactivate enzymes, replacing the need to use periods of high temperature. A plant enzyme, horseradish peroxidase, was studied using time-resolved fluorescence techniques as a means to assess the effect of high frequency (378 kHz and 583 kHz) ultrasound treatment at equivalent acoustic powers. This uncovered the fluorescence emission from a newly formed species, attributed to the formation of di-tyrosine within the horseradish peroxidase structure caused by auto-oxidation, and linked to enzyme inactivation.
Resumo:
Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material.
Resumo:
Objective: Excess levels of free radicals such as nitric oxide (NO) and superoxide anion (O2-)are associated with the pathogenesis of endothelial cell dysfunction in diabetes mellitus. This study was designed to investigate the underlying causes of oxidative stress in coronary microvascular endothelial cells (CMEC) exposed to hyperglycaemia. Methods: CMEC were cultured under normal (5.5 mmol/L) or high glucose (22 mmol/L)concentrations for 7 days. The activity and expression (protein level) of eNOS, iNOS, NAD(P)H oxidase and antioxidant enzymes, namely, superoxide dismutase (SOD), catalase and glutahione peroxidase (GPx) were investigated by specific activity assays and Western analyses,respectively while the effects of hyperglycaemia on nitrite and O2 - generation were investigated by Griess reaction and cytochrome C reduction assay, respectively. Results: Hyperglycaemia did not alter eNOS or iNOS protein expressions and overall nitrite generation, an index of NO production. However, it significantly reduced the levels of intracellular antioxidant glutathione by 50% (p<0.05) and increased the protein expressions and/or activities of p22-phox, a membrane-bound component of pro-oxidant NAD(P)H oxidase and antioxidant enzymes (p<0.05). Free radical-scavengers, namely, Tiron and MPG (0.1-1 mol/L) reduced hyperglycaemia-induced antioxidant enzyme activity and increased glutathione and nitrite generation to the levels observed in CMEC cultured in normoglycaemic medium (p<0.01). The differences in enzyme activity and expressions were independent of the increased osmolarity generated by high glucose levels as investigated by using equimolar concentrations of mannitol in parallel experiments. Conclusions: These results suggest that hyperglycaemia-induced oxidative stress may arise in CMEC as a result of enhanced prooxidant enzyme activity and diminished generation of 3 antioxidant glutathione. By increasing the antioxidant enzyme capacity CMEC may protect themselves against free radical-induced cell damage in diabetic conditions. The definitive version is available at http://www.blackwell-synergy.com