940 resultados para Feature Classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method. and its results are compared to traditional shape analysis methods found in literature. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differently from theoretical scale-free networks, most real networks present multi-scale behavior, with nodes structured in different types of functional groups and communities. While the majority of approaches for classification of nodes in a complex network has relied on local measurements of the topology/connectivity around each node, valuable information about node functionality can be obtained by concentric (or hierarchical) measurements. This paper extends previous methodologies based on concentric measurements, by studying the possibility of using agglomerative clustering methods, in order to obtain a set of functional groups of nodes, considering particular institutional collaboration network nodes, including various known communities (departments of the University of Sao Paulo). Among the interesting obtained findings, we emphasize the scale-free nature of the network obtained, as well as identification of different patterns of authorship emerging from different areas (e.g. human and exact sciences). Another interesting result concerns the relatively uniform distribution of hubs along concentric levels, contrariwise to the non-uniform pattern found in theoretical scale-free networks such as the BA model. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The latest version of CATH (class, architecture, topology, homology) (version 3.2), released in July 2008 (http://www.cathdb.info), contains 1 14215 domains, 2178 Homologous superfamilies and 1110 fold groups. We have assigned 20 330 new domains, 87 new homologous superfamilies and 26 new folds since CATH release version 3.1. A total of 28 064 new domains have been assigned since our NAR 2007 database publication (CATH version 3.0). The CATH website has been completely redesigned and includes more comprehensive documentation. We have revisited the CATH architecture level as part of the development of a `Protein Chart` and present information on the population of each architecture. The CATHEDRAL structure comparison algorithm has been improved and used to characterize structural diversity in CATH superfamilies and structural overlaps between superfamilies. Although the majority of superfamilies in CATH are not structurally diverse and do not overlap significantly with other superfamilies, similar to 4% of superfamilies are very diverse and these are the superfamilies that are most highly populated in both the PDB and in the genomes. Information on the degree of structural diversity in each superfamily and structural overlaps between superfamilies can now be downloaded from the CATH website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bothropasin is a 48 kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys(189) is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from I`ll SVMPs. The ECD motif is stabilized by the Cys(117)_Cys(310) disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu(276) of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other Pill SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other Pill members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new framework for generating triangular meshes from textured color images. The proposed framework combines a texture classification technique, called W-operator, with Imesh, a method originally conceived to generate simplicial meshes from gray scale images. An extension of W-operators to handle textured color images is proposed, which employs a combination of RGB and HSV channels and Sequential Floating Forward Search guided by mean conditional entropy criterion to extract features from the training data. The W-operator is built into the local error estimation used by Imesh to choose the mesh vertices. Furthermore, the W-operator also enables to assign a label to the triangles during the mesh construction, thus allowing to obtain a segmented mesh at the end of the process. The presented results show that the combination of W-operators with Imesh gives rise to a texture classification-based triangle mesh generation framework that outperforms pixel based methods. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the possibility of interpreting the degeneracy of the genetic code, i.e., the feature that different codons (base triplets) of DNA are transcribed into the same amino acid, as the result of a symmetry breaking process, in the context of finite groups. In the first part of this paper, we give the complete list of all codon representations (64-dimensional irreducible representations) of simple finite groups and their satellites (central extensions and extensions by outer automorphisms). In the second part, we analyze the branching rules for the codon representations found in the first part by computational methods, using a software package for computational group theory. The final result is a complete classification of the possible schemes, based on finite simple groups, that reproduce the multiplet structure of the genetic code. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q).