997 resultados para Empirical dispersion corrections
Resumo:
The students academic performance is a key aspect for all agents involved in a higher education quality program. However, there is no unanimity on how to measure it. Some professionals choose assessing only cognitive aspects while others lean towards assessing the acquisition of certain skills. The need to train increasingly adapted professionals in order to respond to the companies’ demands and being able to compete internationally in a global labour market requires a kind of training that goes beyond memorizing. Critical and logical thinking are amongst written language skills demanded in the field of Social Sciences. The objective of this study is to empirically demonstrate the impact of voluntary assignments on the academic performance of students. Our hypothesis is that students who complete high quality voluntary assignments are those more motivated and, therefore, those with higher grades. An experiment with students from the "Financial Accounting II" during the academic year of 2012/13 at the Business and Economics School of the UCM was carried out. A series of voluntary assessments involving the preparation of accounting essays were proposed in order to develop skills and competencies as a complement to the lessons included in the curriculum of the subject. At the end of the course, the carrying-out or not of the essay together with its critical, reflective quality and style, were compared. Our findings show a relationship between the voluntarily presented papers of quality and the final grade obtained throughout the course. These results show that the students intrinsic motivation is a key element in their academic performance. On the other hand, the teachers role focuses on being a motivating element through the learning process.
Resumo:
A flexible, mass-conservative numerical technique for solving the advection-dispersion equation for miscible contaminant transport is presented. The method combines features of puff transport models from air pollution studies with features from the random walk particle method used in water resources studies, providing a deterministic time-marching algorithm which is independent of the grid Peclet number and scales from one to higher dimensions simply. The concentration field is discretised into a number of particles, each of which is treated as a point release which advects and disperses over the time interval. The dispersed puff is itself discretised into a spatial distribution of particles whose masses can be pre-calculated. Concentration within the simulation domain is then calculated from the mass distribution as an average over some small volume. Comparison with analytical solutions for a one-dimensional fixed-duration concentration pulse and for two-dimensional transport in an axisymmetric flow field indicate that the algorithm performs well. For a given level of accuracy the new method has lower computation times than the random walk particle method.
Resumo:
A comparative study of models used to predict contaminant dispersion in a partially stratified room is presented. The experiments were carried out in a ventilated test room, with an initially evenly dispersed pollutant. Air was extracted from the outlet in the ceiling of the room at 1 and 3 air changes per hour. A small temperature difference between the top and bottom of the room causes very low air velocities, and higher concentrations, in the lower half of the room. Grid-independent CFD calculations were compared with predictions from a zonal model and from CFD using a very coarse grid. All the calculations show broadly similar contaminant concentration decay rates for the three locations monitored in the experiments, with the zonal model performing surprisingly well. For the lower air change rate, the models predict a less well mixed contaminant distribution than the experimental measurements suggest. With run times of less than a few minutes, the zonal model is around two orders of magnitude faster than coarse-grid CFD and could therefore be used more easily in parametric studies and sensitivity analyses. For a more detailed picture of internal dispersion, a CFD study using coarse and standard grids may be more appropriate.
Resumo:
A problem with use of the geostatistical Kriging error for optimal sampling design is that the design does not adapt locally to the character of spatial variation. This is because a stationary variogram or covariance function is a parameter of the geostatistical model. The objective of this paper was to investigate the utility of non-stationary geostatistics for optimal sampling design. First, a contour data set of Wiltshire was split into 25 equal sub-regions and a local variogram was predicted for each. These variograms were fitted with models and the coefficients used in Kriging to select optimal sample spacings for each sub-region. Large differences existed between the designs for the whole region (based on the global variogram) and for the sub-regions (based on the local variograms). Second, a segmentation approach was used to divide a digital terrain model into separate segments. Segment-based variograms were predicted and fitted with models. Optimal sample spacings were then determined for the whole region and for the sub-regions. It was demonstrated that the global design was inadequate, grossly over-sampling some segments while under-sampling others.
Resumo:
This study describes a study of 14 software companies, on how they initiate and pre-plan software projects. The aim was to obtain an indication of the range of planning activities carried out. The study, using a convenience sample, was carried out using structured interviews, with questions about early software project planning activities. The study offers evidence that an iterative and incremental development process presents extra difficulties in the case of fixed-contract projects. The authors also found evidence that feasibility studies were common, but generally informal in nature. Documentation of the planning process, especially for project scoping, was variable. For incremental and iterative development projects, an upfront decision on software architecture was shown to be preferred over allowing the architecture to just ‘emerge’. There is also evidence that risk management is recognised but often performed incompletely. Finally appropriate future research arising from the study is described.