963 resultados para Electronics.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speed control of ac motors requires variable frequency, variable current, or variable voltage supply. Variable frequency supply can be obtained directly from a fixed frequency supply by using a frequency converter or from a dc source using inverters. In this paper a control technique for reference wave adaptive-current generation by modulating the inverter voltage is explained. Extension of this technique for three-phase induction-motor speed control is briefly explained. The oscillograms of the current waveforms obtained from the experimental setup are also shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the critical issues in large scale commercial exploitation of MEMS technology is its system integration. In MEMS, a system design approach requires integration of varied and disparate subsystems with one of a kind interface. The physical scales as well as the magnitude of signals of various subsystems vary widely. Known and proven integration techniques often lead to considerable loss in advantages the tiny MEMS sensors have to offer. Therefore, it becomes imperative to think of the entire system at the outset, at least in terms of the concept design. Such design entails various aspects of the system ranging from selection of material, transduction mechanism, structural configuration, interface electronics, and packaging. One way of handling this problem is the system-in-package approach that uses optimized technology for each function using the concurrent hybrid engineering approach. The main strength of this design approach is the fast time to prototype development. In the present work, we pursue this approach for a MEMS load cell to complete the process of system integration for high capacity load sensing. The system includes; a micromachined sensing gauge, interface electronics and a packaging module representing a system-in-package ready for end characterization. The various subsystems are presented in a modular stacked form using hybrid technologies. The micromachined sensing subsystem works on principles of piezo-resistive sensing and is fabricated using CMOS compatible processes. The structural configuration of the sensing layer is designed to reduce the offset, temperature drift, and residual stress effects of the piezo-resistive sensor. ANSYS simulations are carried out to study the effect of substrate coupling on sensor structure and its sensitivity. The load cell system has built-in electronics for signal conditioning, processing, and communication, taking into consideration the issues associated with resolution of minimum detectable signal. The packaged system represents a compact and low cost solution for high capacity load sensing in the category of compressive type load sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been said that we are living in a golden age of innovation. New products, systems and services aimed to enable a better future, have emerged from novel interconnections between design and design research with science, technology and the arts. These intersections are now, more than ever, catalysts that enrich daily activities for health and safety, education, personal computing, entertainment and sustainability, to name a few. Interactive functions made possible by new materials, technology, and emerging manufacturing solutions demonstrate an ongoing interplay between cross-disciplinary knowledge and research. Such interactive interplay bring up questions concerning: (i) how art and design provide a focus for developing design solutions and research in technology; (ii) how theories emerging from the interactions of cross-disciplinary knowledge inform both the practice and research of design and (iii) how research and design work together in a mutually beneficial way. The IASDR2015 INTERPLAY EXHIBITION provides some examples of these interconnections of design research with science, technology and the arts. This is done through the presentation of objects, artefacts and demonstrations that are contextualised into everyday activities across various areas including health, education, safety, furniture, fashion and wearable design. The exhibits provide a setting to explore the various ways in which design research interacts across discipline knowledge and approaches to stimulate innovation. In education, Designing South African Children’s Health Education as Generative Play (A Bennett, F Cassim, M van der Merwe, K van Zijil, and M Ribbens) presents a set of toolkits that resulted from design research entailing generative play. The toolkits are systems that engender pleasure and responsibility, and are aimed at cultivating South African’s youth awareness of nutrition, hygiene, disease awareness and prevention, and social health. In safety, AVAnav: Avalanche Rescue Helmet (Jason Germany) delivers an interactive system as a tool to contribute to reduce the time to locate buried avalanche victims. Helmet-mounted this system responds to the contextual needs of rescuers and has since led to further design research on the interface design of rescuing devices. In apparel design and manufacturing, Shrinking Violets: Fashion design for disassembly (Alice Payne) proposes a design for disassembly through the use of beautiful reversible mono-material garments that interactively responds to the challenges of garment construction in the fashion industry, capturing the metaphor for the interplay between technology and craft in the fashion manufacturing industry. Harvest: A biotextile future (Dean Brough and Alice Payne), explores the interplay of biotechnology, materiality and textile design in the creation of sustainable, biodegradable vegan textile through the process of a symbiotic culture of bacteria and yeast (SCOBY). SCOBY is a pellicle curd that can be harvested, machine washed, dried and cut into a variety of designs and texture combinations. The exploration of smart materials, wearable design and micro-electronics led to creative and aesthetically coherent stimulus-reactive jewellery; Symbiotic Microcosms: Crafting Digital Interaction (K Vones). This creation aims to bridge the gap between craft practitioner and scientific discovery, proposing a move towards the notion of a post-human body, where wearable design is seen as potential ground for new human-computer interactions, affording the development of visually engaging multifunctional enhancements. In furniture design, Smart Assistive chair for older adults (Chao Zhao) demonstrates how cross-disciplinary knowledge interacting with design strategies provide solution that employed new technological developments in older aged care, and the participation of multiple stakeholders: designers, health care system and community based health systems. In health, Molecular diagnosis system for newborns deafness genetic screening (Chao Zhao) presents an ambitious and complex project that includes a medical device aimed at resolving a number of challenges: technical feasibility for city and rural contexts, compatibility with standard laboratory and hospital systems, access to health system, and support the work of different hospital specialists. The interplay between cross-disciplines is evident in this work, demonstrating how design research moves forward through technology developments. These works exemplify the intersection between domains as a means to innovation. Novel design problems are identified as design intersects with the various areas. Research informs this process, and in different ways. We see the background investigation into the contextualising domain (e.g. on-snow studies, garment recycling, South African health concerns, the post human body) to identify gaps in the area and design criteria; the technologies and materials reviews (e.g. AR, biotextiles) to offer plausible technical means to solve these, as well as design criteria. Theoretical reviews can also inform the design (e.g. play, flow). These work together to equip the design practitioner with a robust set of ‘tools’ for design innovation – tools that are based in research. The process identifies innovative opportunity and criteria for design and this, in turn, provides a means for evaluating the success of the design outcomes. Such an approach has the potential to come full circle between research and design – where the design can function as an exemplar, evidencing how the research-articulated problems can be solved. Core to this, however, is the evaluation of the design outcome itself and identifying knowledge outcomes. In some cases, this is fairly straightforward that is, easily measurable. For example the efficacy of Jason Germany’s helmet can be determined by measuring the reduced response time in the rescuer. Similarly the improved ability to recycle Payne’s panel garments can be clearly determined by comparing it to those recycling processes (and her identified criteria of separating textile elements!); while the sustainability and durability of the Brough & Payne’s biotextile can be assessed by documenting the growth and decay processes, or comparative strength studies. There are however situations where knowledge outcomes and insights are not so easily determined. Many of the works here are open-ended in their nature, as they emphasise the holistic experience of one or more designs, in context: “the end result of the art activity that provides the health benefit or outcome but rather, the value lies in the delivery and experience of the activity” (Bennet et al.) Similarly, reconfiguring layers of laser cut silk in Payne’s Shrinking Violets constitutes a customisable, creative process of clothing oneself since it “could be layered to create multiple visual effects”. Symbiotic Microcosms also has room for facilitating experience, as the work is described to facilitate “serendipitous discovery”. These examples show the diverse emphasis of enquiry as on the experience versus the product. Open-ended experiences are ambiguous, multifaceted and differ from person to person and moment to moment (Eco 1962). Determining the success is not always clear or immediately discernible; it may also not be the most useful question to ask. Rather, research that seeks to understand the nature of the experience afforded by the artefact is most useful in these situations. It can inform the design practitioner by helping them with subsequent re-design as well as potentially being generalizable to other designers and design contexts. Bennett et. al exemplify how this may be approached from a theoretical perspective. This work is concerned with facilitating engaging experiences to educate and, ultimately impact on that community. The research is concerned with the nature of that experience as well, and in order to do so the authors have employed theoretical lenses – here these are of flow, pleasure, play. An alternative or complementary approach to using theory, is using qualitative studies such as interviews with users to ask them about what they experienced? Here the user insights become evidence for generalising across, potentially revealing insight into relevant concerns – such as the range of possible ‘playful’ or experiences that may be afforded, or the situation that preceded a ‘serendipitous discovery’. As shown, IASDR2015 INTERPLAY EXHIBITION provides a platform for exploration, discussion and interrogation around the interplay of design research across diverse domains. We look forward with excitement as IASDR continues to bring research and design together, and as our communities of practitioners continue to push the envelope of what is design and how this can be expanded and better understood with research to foster new work and ultimately, stimulate innovation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new donor-acceptor type liquid crystalline semiconductors based on benzothiazole have been synthesized. Their structural, photophysical and electronic properties were investigated using X-ray diffraction, atomic force microscopy, cyclic voltammetry, UV-Vis, photoluminescence, and Raman spectroscopy. The liquid crystalline behaviour of the molecules was thoroughly examined by differential scanning calorimetry (DSC) and optical polarizing microscope. The DSC and thermogravimetric analysis (TGA) show that these materials posses excellent thermal stability and have decomposition temperatures in excess of 300 degrees C. Beyond 160 degrees C both molecules show a smectic A liquid crystalline phase that exists till about 240 degrees C. Field-effect transistors were fabricated by vacuum evaporating the semiconductor layer using standard bottom gate/top contact geometry. The devices exhibit p-channel behaviour with hole mobilities of 10(-2) cm(2)/Vs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow resistance of an alluvial channel flow is not only affected by the Reynolds number and the roughness conditions but also the Froude number. Froude number is the most basic parameter in the case of the alluvial channel, thus effect of Froude number on resistance to flow should be considered in the formulation of the friction factor, which is not in the case of present available resistance equations. At present, no generally acceptable quantitative description of the effects of the Froude number on hydraulic resistance has been developed. Metamodeling technique, which is particularly useful in modeling a complex processes or where knowledge of the physics is limited, is presented as a tool complimentary to modeling friction factor in alluvial channels. Present work uses, a radial basis metamodel, which is a type of neural network modeling, to find the effect of Froude number on the flow resistance. Based on the experimental data taken from different sources, it has been found that the predicting capability of the present model is on acceptable level. Present work also tries in formulating an empirical equation for resistance in alluvial channel comprising all the three majorm, parameters, namely, roughness parameter, Froude number and Reynolds number. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BeiDou system is the first global navigation satellite system in which all satellites transmit triple-frequency signals that can provide the positioning, navigation, and timing independently. A benefit of triple-frequency signals is that more useful combinations can be formed, including some extrawide-lane combinations whose ambiguities can generally be instantaneously fixed without distance restriction, although the narrow-lane ambiguity resolution (NL AR) still depends on the interreceiver distance or requires a long time to achieve. In this paper, we synthetically study decimeter and centimeter kinematic positioning using BeiDou triple-frequency signals. It starts with AR of two extrawide-lane signals based on the ionosphere-free or ionosphere-reduced geometry-free model. For decimeter positioning, one can immediately use two ambiguity-fixed extrawide-lane observations without pursuing NL AR. To achieve higher accuracy, NL AR is the necessary next step. Despite the fact that long-baseline NL AR is still challenging, some NL ambiguities can indeed be fixed with high reliability. Partial AR for NL signals is acceptable, because as long as some ambiguities for NL signals are fixed, positioning accuracy will be certainly improved.With accumulation of observations, more and more NL ambiguities are fixed and the positioning accuracy continues to improve. An efficient Kalman-filtering system is established to implement the whole process. The formulated system is flexible, since the additional constraints can be easily applied to enhance the model's strength. Numerical results from a set of real triple-frequency BeiDou data on a 50 km baseline show that decimeter positioning is achievable instantaneously.With only five data epochs, 84% of NL ambiguities can be fixed so that the real-time kinematic accuracies are 4.5, 2.5, and 16 cm for north, east, and height components (respectively), while with 10 data epochs more than 90% of NL ambiguities are fixed, and the rea- -time kinematic solutions are improved to centimeter level for all three coordinate components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a low cost but high resolution retinal image acquisition system of the human eye. The images acquired by a CMOS image sensor are communicated through the Universal Serial Bus (USB) interface to a personal computer for viewing and further processing. The image acquisition time was estimated to be 2.5 seconds. This system can also be used in telemedicine applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mobile applications are being increasingly deployed on a massive scale in various mobile sensor grid database systems. With limited resources from the mobile devices, how to process the huge number of queries from mobile users with distributed sensor grid databases becomes a critical problem for such mobile systems. While the fundamental semantic cache technique has been investigated for query optimization in sensor grid database systems, the problem is still difficult due to the fact that more realistic multi-dimensional constraints have not been considered in existing methods. To solve the problem, a new semantic cache scheme is presented in this paper for location-dependent data queries in distributed sensor grid database systems. It considers multi-dimensional constraints or factors in a unified cost model architecture, determines the parameters of the cost model in the scheme by using the concept of Nash equilibrium from game theory, and makes semantic cache decisions from the established cost model. The scenarios of three factors of semantic, time and locations are investigated as special cases, which improve existing methods. Experiments are conducted to demonstrate the semantic cache scheme presented in this paper for distributed sensor grid database systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article draws on the design and implementation of three mobile learning projects introduced by Flanagan in 2011, 2012 and 2014 engaging a total of 206 participants. The latest of these projects is highlighted in this article. Two other projects provide additional examples of innovative strategies to engage mobile and cloud systems describing how electronic and mobile technology can help facilitate teaching and learning, assessment for learning and assessment as learning, and support communities of practice. The second section explains the theoretical premise supporting the implementation of technology and promulgates a hermeneutic phenomenological approach. The third section discusses mobility, both in terms of the exploration of wearable technology in the prototypes developed as a result of the projects, and the affordances of mobility within pedagogy. Finally the quantitative and qualitative methods in place to evaluate m-learning are explained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drive to replace lead (Pb) from electronics has led to the replacement of tin (Sn) alloys as the terminal plating for electronic devices. However, the deposition of Sn based alloys as the component surface finish tends to induce Sn whisker that causes unintended electric shorts when the conductive whiskers grow across to the adjacent conductor. Internal stress is considered as the driving force that causes the growth of Sn whiskers. In this study, stress type of elevated temperature/ humidity exposure at 55C/85%RH with the storage for up to 24 months was conducted to define the acceleration factor in samples with deposition of immersion Sn plating and Sn solder dipping. The addition of Nickel (Ni) under-layer was also applied to examine the correlation to field conditions. The results showed that the whisker length increased in high humidity irrespective of the deposition methods. It was also shown that pure Sn solder dipping mitigated the whisker growth but does not completely prevent it when alloying Sn with 0.4%wtCu. Additionally, Ni under-layer was indicated to be more efficient in mitigating the growth of whisker by prolonging the incubation time for whisker formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol-gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 A degrees C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60-80 nm in size is really an aggregate of many small crystallites of around 10-20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10(-5)-10(-6) (Omega cm)(-1). The optical study showed that the spectra for all samples give the transparency in the visible range.