996 resultados para Diodes organiques électroluminescentes
Resumo:
The optical properties of plasmonic semiconductor devices fabricated by focused ion beam (FIB) milling deteriorate because of the amorphisation of the semiconductor substrate. This study explores the effects of combining traditional 30 kV FIB milling with 5 kV FIB patterning to minimise the semiconductor damage and at the same time maintain high spatial resolution. The use of reduced acceleration voltages is shown to reduce the damage from higher energy ions on the example of fabrication of plasmonic crystals on semiconductor substrates leading to 7-fold increase in transmission. This effect is important for focused-ion beam fabrication of plasmonic structures integrated with photodetectors, light-emitting diodes and semiconductor lasers.
Resumo:
Organic semiconductors have already found commercial applications in for example displays with organic light-emitting diodes (OLEDs) and great advances are also being made in other areas, such as organic field-effect transistors and organic solar cells. [1] The organic semicondutor group of materials known as metal phthalocyanines (MPc’s) is interesting for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPc’s. [1, 2]
Many of the properties of organic semiconductors, such as magnetism, light absorption and charge transport, show orientational anisotropy. [2, 3] To maximise the efficiency of a device based on these materials it is therefore important to study the molecular orientation in films and to assess the influence of different growth conditions and substrate treatments. X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation)_in crystalline materials, but cannot provide any information about amorphous or nanocrystalline films. In this paper we present a continuous wave X-band EPR study using the anisotropy of the CuPc EPR spectrum [4] to determine the orientation effects in different types of CuPc films. From these measurements we also gain insight into the molecular arrangement of films of CuPc mixed with the isomorphous H2Pc and with C60 in films typical of real solar cell systems.
Resumo:
Reconfigurable bistate metasurfaces composed of interwoven spiral arrays with embedded pin diodes are proposed for single and dual polarisation operation. The switching capability is enabled by pin diodes that change the array response between transmission and reflection modes at the specified frequencies. The spiral conductors forming the metasurface also supply the dc bias for controlling pin diodes, thus avoiding the need of additional bias circuitry that can cause parasitic interference and affect the metasurface response. The simulation results show that proposed active metasurfaces exhibit good isolation between transmission and reflection states, while retaining excellent angular and polarisation stability with the large fractional bandwidth (FBW) inherent to the original passive arrays. © 2014 A. Vallecchi et al.
Resumo:
Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600404]
Resumo:
Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.
Resumo:
PtSi/Si Schottky junctions, fabricated using a conventional technique of Pt deposition with a subsequent thermal anneal, are examined using X-ray diffraction, atomic force microscopy and a novel prism/gap/sample optical coupling system. With the aid of X-ray diffraction and atomic farce microscopy it is shown that a post-anneal etch in aqua regia is essential for the removal of an unreacted, rough surface layer of Pt, to leave a much smoother PtSi film. The prism/gap/sample or Otto coupling rig is mounted in a small UHV chamber and has facilities for remote variation of the gap (by virtue of a piezoactuator system) and variation of the temperature in the range of similar to 300 K - 85 K. The system is used to excite surface plasmon polaritons on the outer surface of the PtSi and thus produce sensitive optical characterisation as a function of temperature. This is performed in order to yield an understanding of the temperature dependence of phonon and interface scattering of carriers in the PtSi.
Resumo:
Monte Carlo calculations of quantum yield in PtSi/p-Si infrared detectors are carried out taking into account the presence of a spatially distributed barrier potential. In the 1-4 mu m wavelength range it is found that the spatial inhomogeneity of the barrier has no significant effect on the overall device photoresponse. However, above lambda = 4.0 mu m and particularly as the cut-off wavelength (lambda approximate to 5.5 mu m) is approached, these calculations reveal a difference between the homogeneous and inhomogeneous barrier photoresponse which becomes increasingly significant and exceeds 50% at lambda = 5.3 mu m. It is, in fact, the inhomogeneous barrier which displays an increased photoyield, a feature that is confirmed by approximate analytical calculations assuming a symmetric Gaussian spatial distribution of the barrier. Furthermore, the importance of the silicide layer thickness in optimizing device efficiency is underlined as a trade-off between maximizing light absorption in the silicide layer and optimizing the internal yield. The results presented here address important features which determine the photoyield of PtSi/Si Schottky diodes at energies below the Si absorption edge and just above the Schottky barrier height in particular.
Resumo:
Light emitted from metal/oxide/metal tunnel junctions can originate from the slow-mode surface plasmon polariton supported in the oxide interface region. The effective radiative decay of this mode is constrained by competition with heavy intrinsic damping and by the need to scatter from very small scale surface roughness; the latter requirement arises from the mode's low phase velocity and the usual momentum conservation condition in the scattering process. Computational analysis of conventional devices shows that the desirable goals of decreased intrinsic damping and increased phase velocity are influenced, in order of priority, by the thickness and dielectric function of the oxide layer, the type of metal chosen for each conducting electrode, and temperature. Realizable devices supporting an optimized slow-mode plasmon polariton are suggested. Essentially these consist of thin metal electrodes separated by a dielectric layer which acts as a very thin (a few nm) electron tunneling barrier but a relatively thick (several 10's of nm) optically lossless region. (C) 1995 American Institute of Physics.
Resumo:
A new type of active frequency selective surface (AFSS) is proposed to realise a voltage controlled bi-state (transparent and reflecting) response at the specified frequencies. The bi-state switching is achieved by combining a passive array of interleaved spiral slots in conducting screens and active dipole arrays with integrated pin diodes at the opposite sides of a thin dielectric substrate. Simulation results show that such active surfaces have high isolation between the transparency and reflection states, while retaining the merits of substantially sub-wavelength response of the unit cell and large fractional bandwidths (FBWs) inherent to the original passive interwoven spiral arrays. Potential applications include reconfigurable and controllable electromagnetic architecture of buildings.
Resumo:
Reconfigurable bi-state interwoven spiral FSSs are explored in this work. Their switching capability is realized by pin diodes that enable the change of the electromagnetic response between transparent and reflecting modes at the specified frequencies in both singly and dual polarised unit cell configurations. The proposed topologies are single layer FSS with their elements acting also as dc current carrying conductors supplying the bias signal for switching pin diodes between the on and off states, thus avoiding the need of external bias lines that can cause parasitic resonances and affect the response at oblique incidence. The presented simulation results show that such active FSSs have potentially good isolation between the transmission and reflection states, while retaining the substantially subwavelength response of the unit cell with large fractional bandwidths (FBWs) inherent to the original passive FSSs.
Resumo:
For over a decade, controlling domain wall injection, motion and annihilation along nanowires has been the preserve of the nanomagnetics research community. Revolutionary technologies have resulted, like race-track memory and domain wall logic. Until recently, equivalent research in analogous ferroic materials did not seem important. However, with the discovery of sheet conduction, the control of domain walls in ferroelectrics has become vital for the future of what has been termed “domain wall electronics”. Here we report the creation of a ferroelectric domain wall diode, which allows a single direction of motion for all domain walls, irrespective of their polarity, under a series of alternating electric field pulses. The diode’s saw-tooth morphology is central to its function. Domain walls can move readily in the direction in which thickness increases gradually, but are prevented from moving in the other direction by the sudden thickness increase at the saw-tooth edge.
Resumo:
The fabrication and electrical characterization of Schottky junction diodes have been extensively researched for three-quarters of a century since the original work of Schottky in 1938. This study breaks from the highly standardized regime of such research and provides an alternative methodology that prompts novel, more efficient applications of the adroit Schottky junction in areas such as chemical and thermal sensing. The core departure from standard Schottky diode configuration is that the metal electrode is of comparable or higher resistance than the underlying semiconductor. Further, complete electrical characterization is accomplished through recording four-probe resistance-temperature (R-D-T) characteristics of the device, where electrical sourcing and sensing is done only via the metal electrode and not directly through the semiconductor. Importantly, this results in probing a nominally unbiased junction while eliminating the need for an Ohmic contact to the semiconductor. The characteristic R-D-T plot shows two distinct regions of high (metal) and low (semiconductor) resistances at low and high temperatures, respectively, connected by a crossover region of width, DT, within which there is a large negative temperature coefficient of resistance. The R-D-T characteristic is highly sensitive to the Schottky barrier height; consequently, at a fixed temperature, R-D responds appreciably to small changes in barrier height such as that induced by absorption of a chemical species (e.g., H-2) at the interface. A theoretical model is developed to simulate the R-D-T data and applied to Pd/p-Si and Pt/p-Si Schottky diodes with a range of metal electrode resistance. The analysis gives near-perfect fits to the experimental R-D-T characteristics, yielding the junction properties as fit parameters. The modelling not only helps elucidate the underlying physics but also helps to comprehend the parameter space essential for the discussed applications. Although the primary regime of application is limited to a relatively narrow range (DT) for a given type of diode, the alternative methodology is of universal applicability to all metal-semiconductor combinations forming Schottky contacts. (C) 2015 AIP Publishing LLC.
Resumo:
Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al2O3 interfacial layer (∼2.8 nm). For diodes with an Al2O3 interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO2 interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.
Resumo:
Os nitretos binários semicondutores do grupo III, e respetivos compostos, são vastamente estudados devido à sua possível aplicabilidade em dispositivos optoeletrónicos, tais como díodos emissores de luz (LEDs) e LASERs, assim como dispositivos para a eletrónica de elevadas temperatura, potência e frequência. Enquanto se concretizou a comercialização na última década de LEDs e LASERs recorrendo ao ternário In1-yGayN, estudos das propriedades fundamentais estruturais e óticas, assim como de técnicas de processamento no desenvolvimento de novas aplicações de outros ternários do grupo III-N encontram-se na sua fase inicial. Esta tese apresenta a investigação experimental de filmes finos epitaxiais de Al1-xInxN crescidos sobre camadas tampão de GaN e de Al1-yGayN e o estudo do recozimento e implantação de super-redes (SL) compostas por pontos quânticos de GaN (QD) envolvidos por camadas de AlN. Apesar do hiato energético do Al1-xInxN poder variar entre os 0,7 eV e os 6,2 eV e, por isso, numa gama, consideravelmente superior à dos ternários Al1-yGayN e InyGa1-yN, o primeiro é o menos estudado devido a dificuldades no crescimento de filmes com elevada qualidade cristalina. É efetuada, nesta tese, uma caracterização estrutural e composicional de filmes finos de Al1-xInxN crescidos sobre camadas tampão de GaN e de Al1-yGayN usando técnicas de raios-X, feixe de iões e de microscopia. Mostra-se que o Al1-xInxN pode ser crescido com elevada qualidade cristalina quando a epitaxia do crescimento se aproxima da condição de rede combinada do Al1-xInxN e da camada tampão (GaN ou Al1-yGayN), isto é, com conteúdo de InN de ~18%, quando crescido sobre uma camada de GaN. Quando o conteúdo de InN é inferior/superior à condição de rede combinada, fenómenos de relaxação de tensão e deterioração do cristal tais como o aumento da rugosidade de superfície prejudicam a qualidade cristalina do filme de Al1-xInxN. Observou-se que a qualidade dos filmes de Al1-xInxN depende fortemente da qualidade cristalina da camada tampão e, em particular, da sua morfologia e densidade de deslocações. Verificou-se que, dentro da exatidão experimental, os parâmetros de rede do ternário seguem a lei empírica de Vegard, ou seja, variam linearmente com o conteúdo de InN. Contudo, em algumas amostras, a composição determinada via espetrometria de retrodispersão de Rutherford e difração e raios-X mostra valores discrepantes. Esta discrepância pode ser atribuída a defeitos ou impurezas capazes de alterar os parâmetros de rede do ternário. No que diz respeito às SL dos QD e camadas de AlN, estudos de recozimento mostraram elevada estabilidade térmica dos QD de GaN quando estes se encontram inseridos numa matriz de AlN. Por implantação iónica, incorporou-se európio nestas estruturas e, promoveu-se a ativação ótica dos iões de Eu3+ através de tratamentos térmicos. Foram investigados os efeitos da intermistura e da relaxação da tensão ocorridos durante o recozimento e implantação nas propriedades estruturais e óticas. Verificou-se que para fluências elevadas os defeitos gerados por implantação são de difícil remoção. Contudo, a implantação com baixa fluência de Eu, seguida de tratamento térmico, promove uma elevada eficiência e estabilidade térmica da emissão vermelha do ião lantanídeo incorporado nos QD de GaN. Estes resultados são, particularmente relevantes, pois, na região espetral indicada, a eficiência quântica dos LEDs convencionais de InGaN é baixa.
Resumo:
L’objectif général de cet essai est de proposer des solutions qui facilitent la réduction du gaspillage alimentaire dans l’industrie agroalimentaire au Québec. Le gaspillage alimentaire se produit à toutes les étapes de la chaîne agroalimentaire. Les pertes économiques sont énormes. Chaque jour, des tonnes de denrées comestibles sont jetées, alors que plusieurs personnes ne mangent pas à leur faim. Le gaspillage alimentaire provoque une importante utilisation inutile de ressources naturelles et une grande pollution environnementale. L’analyse de la problématique du gaspillage alimentaire a permis de constater que ce phénomène est peu étudié au Québec. Le gouvernement québécois n’est pas assez impliqué dans la lutte au gaspillage alimentaire. Les actions gouvernementales prévues ont été retardées. Des solutions étrangères de réductions des pertes alimentaires ont été analysées pour déterminer leur pertinence pour le Québec. La belle province fait piètre figure si elle est comparée à certains États et à son homologue canadien la Nouvelle-Écosse. Les conclusions de l’essai montrent qu’une réduction efficace du gaspillage alimentaire au Québec passe par la mise en place d’actions concrètes dans les secteurs public et privé. Dans l’industrie agroalimentaire, les critères esthétiques pour les aliments et la mise au rebut des produits moins frais sont les axes d’intervention à privilégier. Dans le domaine public, la législation est le moyen priorisé pour l’atteinte des objectifs québécois en matière de détournement des résidus organiques. Les initiatives proposées à l’industrie agroalimentaire sont des options très intéressantes, car elles deviennent rapidement profitables. Il est conseillé au ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques d’aller de l’avant avec son projet de loi interdisant l’enfouissement des résidus putrescibles. Revenu Québec devrait changer la réglementation pour rendre le don alimentaire plus profitable pour les entreprises. La modification des champs d’application du double système de datation canadien par Santé Canada faciliterait l’interprétation de la date de péremption.