963 resultados para Decomposition Of Rotation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1 - Anaerobic bacteria of the Clostridium genus acidify mineral media without when agar is added. 2 - Acidulation results from the attack on the agar as a source of carbon. 3 - The quantity of CO² produced by the decomposition of the agar is approximately that obtained with soil bacteria as shown by Waksmann and Diehm working with hemicelluloses. Although galactone is less atacked than the other hemicelluloses the acidity produced is sufficient to disturb the fermentation tests in semi-solid media with agar. 4 - The acidulation of Spray's sugar-free control medium is probably due to the decomposition of the agar by anaerobes. The acidity produced may interfere with the acidity of the fermentation of the sugar in Spray's test or may be added to it, thus giving a false indication of the real acidity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The last 20 years have seen a significant evolution in the literature on horizontal inequity (HI) and have generated two major and "rival" methodological strands, namely, classical HI and reranking. We propose in this paper a class of ethically flexible tools that integrate these two strands. This is achieved using a measure of inequality that merges the well-known Gini coefficient and Atkinson indices, and that allows a decomposition of the total redistributive effect of taxes and transfers in a vertical equity effect and a loss of redistribution due to either classical HI or reranking. An inequality-change approach and a money-metric cost-of-inequality approach are developed. The latter approach makes aggregate classical HI decomposable across groups. As in recent work, equals are identified through a nonparametric estimation of the joint density of gross and net incomes. An illustration using Canadian data from 1981 to 1994 shows a substantial, and increasing, robust erosion of redistribution attributable both to classical HI and to reranking, but does not reveal which of reranking or classical HI is more important since this requires a judgement that is fundamentally normative in nature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The VAT is the most revenue tax in the Spanish economy in the year 2000. The aim of this research is to develop an analysis dissintegrated of the distributional effect of the current VAT in Spain, that is to say, this paper assesses the capacity of redistribution of the tax treatment of each expenditure category. It proposes different approaches for the analysis of the redistributive impact differential of each expenditure concept, and it desires to advocate the method of total decomposition of isolated contribution to the global distributional effect of the VAT. In this sense, this study shows the possibilities to identify the guidelines for possible fiscal adjustments of the Value Added Tax to contribute positively to the objectives of social justice, and its respective consequences on the population's welfare.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest projecte s'ha desenvolupat un entorn repositori de pràctiques per a emmagatzemar i donar una eina de control del material docent que es disposa. El desenvolupament dels mòduls del sistema s'han realitzat després de contemplar els diferents rols que existeixen dintre dels membres del personal docent, sent aquest becaris o professors. Atès que el personal destinat a l'ensenyament està sotmès a un alt grau de rotacions aquest sistema intentarà ser un punt de trobada de totes les seves aportacions, ajudant així la tasca d'avaluació i explicació de les pràctiques. L'estudi d'un nou ventall de pràctiques ha permès conèixer un nou entorn de treball, que ofereix camps no tractats fins al moment a través de la implantació d'un sistema operatiu simulat per sobre del sistema operatiu Linux.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Reversed shoulder prostheses have a semi-congruent design. Furthermore, the center of rotation is inferiorly displaced and a significant tension in the deltoid is often necessary to ensure the joint stability. Consequently, stress transmitted to peri-prosthetic bone may be increased, and could lead to stress fractures. We review a series of patients after reversed shoulder arthroplasty (RSA) and look specifically at the occurrence of postoperative peri-prosthetic stress fractures. Methods: Between 2001 and 2006, 46 consecutive RSA were performed. There were 26 women and 20 men with a mean age of 74 years (53-86). All had preoperative MRI or CT-scan, which did not reveal any fracture. All had a delto-pectoral approach with standard rehabilitation. Review was performed at a mean follow up of 30 months (6-60), and consisted of clinical and radiological (plain X-rays) examinations. Every time a fracture was suspected or in case of recurrent unexpected pain, CT-scan evaluations were performed. The occurrence of peri-prosthetic fractures was looked for. Results: Three patients (7%) sustained a scapular fracture (1 spinal and 2 acromial) without any trauma, between 3 and 6 months after the RSA. Furthermore, one of these patients developed 3 months later a spontaneous clavicular fracture, leading to an overall stress fracture rate of 9%. The four fractures were treated conservatively. Three malunions and one acromial non-union occurred. The range of motion in abduction and flexion decreased significantly after the fracture and stayed limited in all cases. All the three patients reported a recurrence of pain. Conclusion: Peri-prosthetic stress fractures, especially in the acromion and in the spine of the scapula are not unusual after RSA. The etiology is not well known. The increase of stress in peri-prosthetic bone may be due to the semi-congruent design and to an overtension of the deltoid. The management of this complication stays difficult. The conservative treatment leads to mal- or non-union, with persistent pain and limited range of motion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest projecte s'ha dissenyat i simulat una càmera d'ones mil·limètriques mitjançant "Spinning Reflectors" amb l'objectiu d'estudiar la qualitat de les imatges obtingudes, així com determinar la configuració de reflectors acceptable per a la nostra càmera. Per al seu disseny, s'ha realitzat el model d'una antena Cassegrain amb botzina alimentadora a FEKO i s'han simulat els diagrames de radiació corresponents als diferents angles de rotació d'ambdós reflectors al voltant de l'eix en el qual estan situats. Finalment, a partir del principi de funcionament de la nostra càmera, s'ha exposat la seva implementació física i s'ha representat en Matlab la seva PSF (Point Spread Function) i la imatge d'un objecte arbitrari d'acord amb les tècniques de formació d'imatges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Toro Toro (T) and Yungas (Y) have been described as genetically well differentiated populations of the Lutzomyia longipalpis (Lutz & Neiva, 1912) complex in Bolivia. Here we use geometric morphometrics to compare samples from these populations and new populations (Bolivia and Nicaragua), representing distant geographical origins, qualitative morphological variation ("one-spot" or "two-spots" phenotypes), ecologically distinct traits (peridomestic and silvatic populations), and possibly different epidemiological roles (transmitting or nor transmitting Leishmania chagasi). The Nicaragua (N) (Somotillo) sample was "one-spot" phenotype and a possible peridomestic vector. The Bolivian sample of the Y was also "one-spot" phenotype and a demonstrated peridomestic vector of visceral leishmaniasis (VL). The three remaining samples were silvatic, "two-spots" phenotypes. Two of them (Uyuni and T) were collected in the highlands of Bolivian where VL never has been reported. The last one (Robore, R) came from the lowlands of Bolivia, where human cases of VL are sporadically reported. The decomposition of metric variation into size and shape by geometric morphometric techniques suggests the existence of two groups (N/Y/R, and U/T). Several arguments indicate that such subdivision of Lu. longipalpis could correspond to different evolutionary units.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of orthonormal coordinates in the simplex and, particularly, balance coordinates, has suggested the use of a dendrogram for the exploratory analysis of compositional data. The dendrogram is based on a sequential binary partition of a compositional vector into groups of parts. At each step of a partition, one group of parts isdivided into two new groups, and a balancing axis in the simplex between both groupsis defined. The set of balancing axes constitutes an orthonormal basis, and the projections of the sample on them are orthogonal coordinates. They can be represented in adendrogram-like graph showing: (a) the way of grouping parts of the compositional vector; (b) the explanatory role of each subcomposition generated in the partition process;(c) the decomposition of the total variance into balance components associated witheach binary partition; (d) a box-plot of each balance. This representation is useful tohelp the interpretation of balance coordinates; to identify which are the most explanatory coordinates; and to describe the whole sample in a single diagram independentlyof the number of parts of the sample

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In several computer graphics areas, a refinement criterion is often needed to decide whether to goon or to stop sampling a signal. When the sampled values are homogeneous enough, we assume thatthey represent the signal fairly well and we do not need further refinement, otherwise more samples arerequired, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is verysensitive to variability is necessary. In this paper, we present a family of discrimination measures, thef-divergences, meeting this requirement. These convex functions have been well studied and successfullyapplied to image processing and several areas of engineering. Two applications to global illuminationare shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. Weobtain significantly better results than with classic criteria, showing that f-divergences are worth furtherinvestigation in computer graphics. Also a discrimination measure based on entropy of the samples forrefinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a naturalmethod to deal with the adaptive subdivision of the sampling region

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolution of compositions in time, space, temperature or other covariates is frequentin practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of thesample, thus producing a transfer of mass from some components to other ones, butpreserving the total mass present in the system. This evolution is traditionally modelledas a system of ordinary di erential equations of the mass of each component. However,this kind of evolution can be decomposed into a compositional change, expressed interms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despiteof some subcompositions behaving linearly.The goal is to study the characteristics of such simplicial systems of di erential equa-tions such as linearity and stability. This is performed extracting the compositional differential equations from the mass equations. Then, simplicial derivatives are expressedin coordinates of the simplex, thus reducing the problem to the standard theory ofsystems of di erential equations, including stability. The characterisation of stabilityof these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and theassociated behaviour of the orbits are the main tools. For a three component system,these orbits can be plotted both in coordinates of the simplex or in a ternary diagram.A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is aradioactive decay

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reversed shoulder prostheses are increasingly being used for the treatment of glenohumeral arthropathy associated with a deficient rotator cuff. These non-anatomical implants attempt to balance the joint forces by means of a semi-constrained articular surface and a medialised centre of rotation. A finite element model was used to compare a reversed prosthesis with an anatomical implant. Active abduction was simulated from 0 degrees to 150 degrees of elevation. With the anatomical prosthesis, the joint force almost reached the equivalence of body weight. The joint force was half this for the reversed prosthesis. The direction of force was much more vertically aligned for the reverse prosthesis, in the first 90 degrees of abduction. With the reversed prosthesis, abduction was possible without rotator cuff muscles and required 20% less deltoid force to achieve it. This force analysis confirms the potential mechanical advantage of reversed prostheses when rotator cuff muscles are deficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scarcities of environmental services are no longer merely a remote hypothesis. Consequently, analysis of their inequalities between nations becomes of paramount importance for the achievement of sustainability in terms either of international policy, or of Universalist ethical principles of equity. This paper aims, on the one hand, at revising methodological aspects of the inequality measurement of certain environmental data and, on the other, at extending the scarce empirical evidence relating to the international distribution of Ecological Footprint (EF), by using a longer EF time series. Most of the techniques currently important in the literature are revised and then tested on EF data with interesting results. We look in depth at Lorenz dominance analyses and consider the underlying properties of different inequality indices. Those indices which fit best with environmental inequality measurements are CV2 and GE(2) because of their neutrality property, however a trade-off may occur when subgroup decompositions are performed. A weighting factor decomposition method is proposed in order to isolate weighting factor changes in inequality growth rates. Finally, the only non-ambiguous way of decomposing inequality by source is the natural decomposition of CV2, which additionally allows the interpretation of marginal term contributions. Empirically, this paper contributes to the environmental inequality measurement of EF: this inequality has been quite stable and its change over time is due to per capita vector changes rather than population changes. Almost the entirety of the EF inequality is explainable by differences in the means between the countries of the World Bank group. This finding suggests that international environmental agreements should be attempted on a regional basis in an attempt to achieve greater consensus between the parties involved. Additionally, source decomposition warns of the dangers of confining CO2 emissions reduction to crop-based energies because of the implications for basic needs satisfaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scarcities of environmental services are no longer merely a remote hypothesis. Consequently, analysis of their inequalities between nations becomes of paramount importance for the achievement of sustainability in terms either of international policy, or of Universalist ethical principles of equity. This paper aims, on the one hand, at revising methodological aspects of the inequality measurement of certain environmental data and, on the other, at extending the scarce empirical evidence relating to the international distribution of Ecological Footprint (EF), by using a longer EF time series. Most of the techniques currently important in the literature are revised and then tested on EF data with interesting results. We look in depth at Lorenz dominance analyses and consider the underlying properties of different inequality indices. Those indices which fit best with environmental inequality measurements are CV2 and GE(2) because of their neutrality property, however a trade-off may occur when subgroup decompositions are performed. A weighting factor decomposition method is proposed in order to isolate weighting factor changes in inequality growth rates. Finally, the only non-ambiguous way of decomposing inequality by source is the natural decomposition of CV2, which additionally allows the interpretation of marginal term contributions. Empirically, this paper contributes to the environmental inequality measurement of EF: this inequality has been quite stable and its change over time is due to per capita vector changes rather than population changes. Almost the entirety of the EF inequality is explainable by differences in the means between the countries of the World Bank group. This finding suggests that international environmental agreements should be attempted on a regional basis in an attempt to achieve greater consensus between the parties involved. Additionally, source decomposition warns of the dangers of confining CO2 emissions reduction to crop-based energies because of the implications for basic needs satisfaction. Keywords: ecological footprint; ecological inequality measurement, inequality decomposition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we characterize the non-emptiness of the equity core (Selten, 1978) and provide a method, easy to implement, for computing the Lorenz-maximal allocations in the equal division core (Dutta-Ray, 1991). Both results are based on a geometrical decomposition of the equity core as a finite union of polyhedrons. Keywords: Cooperative game, equity core, equal division core, Lorenz domination. JEL classification: C71