958 resultados para Cost allocation
Resumo:
The process of making replicas of heritage has traditionally been developed by public agencies, corporations and museums and is not commonly used in schools. Currently there are technologies that allow creating cheap replicas. The new 3D reconstruction software, based on photographs and low cost 3D printers allow to make replicas at a cost much lower than traditional. This article describes the process of creating replicas of the sculpture Goslar Warrior of artist Henry Moore, located in Santa Cruz de Tenerife. To make this process, first, a digital model have been created using Autodesk Recap 360, Autodesk 123D Catch and Autodesk Meshmixer MarkerBot MakerWare applications. Physical replication, has been reproduced in polylactic acid (PLA) by MakerBot Replicator 2 3D printer. In addition, a cost analysis using, in one hand, the printer mentioned, and in the other hand, 3D printing services both online and local, is included. Finally, there has been a specific action with 141 students and 12 high school teachers, who filled a questionnary about the use of sculptural replicas in education.
Resumo:
The study investigates how producer-specific environmental factors influence the performance of Irish credit unions. The empirical analysis uses a two-stage approach. The first stage measures efficiency by a data envelopment analysis (DEA) estimator, which explicitly incorporates the production of undesirable outputs such as bad loans in the modelling, and the second stage uses truncated regression to infer how various factors influence the (bias-corrected) estimated efficiency. A key finding of the analysis is that 68% of Irish credit unions do not incur an extra opportunity cost in meeting regulatory guidance on bad debt.
Resumo:
Objectives: The Secondary Prevention of Heart disEase in geneRal practicE (SPHERE) trial has recently reported. This study examines the cost-effectiveness of the SPHERE intervention in both healthcare systems on the island of Ireland. Methods: Incremental cost-effectiveness analysis. A probabilistic model was developed to combine within-trial and beyond-trial impacts of treatment to estimate the lifetime costs and benefits of two secondary prevention strategies: Intervention - tailored practice and patient care plans; and Control - standardized usual care. Results: The intervention strategy resulted in mean cost savings per patient of 512.77 (95 percent confidence interval [CI], 1086.46-91.98) and an increase in mean quality-adjusted life-years (QALYs) per patient of 0.0051 (95 percent CI, 0.0101-0.0200), when compared with the control strategy. The probability of the intervention being cost-effective was 94 percent if decision makers are willing to pay €45,000 per additional QALY. Conclusions: Decision makers in both settings must determine whether the level of evidence presented is sufficient to justify the adoption of the SPHERE intervention in clinical practice. Copyright © Cambridge University Press 2010.
Resumo:
Continuing achievements in hardware technology are bringing ubiquitous computing closer to reality. The notion of a connected, interactive and autonomous environment is common to all sensor networks, biosystems and radio frequency identification (RFID) devices, and the emergence of significant deployments and sophisticated applications can be expected. However, as more information is collected and transmitted, security issues will become vital for such a fully connected environment. In this study the authors consider adding security features to low-cost devices such as RFID tags. In particular, the authors consider the implementation of a digital signature architecture that can be used for device authentication, to prevent tag cloning, and for data authentication to prevent transmission forgery. The scheme is built around the signature variant of the cryptoGPS identification scheme and the SHA-1 hash function. When implemented on 130 nm CMOS the full design uses 7494 gates and consumes 4.72 mu W of power, making it smaller and more power efficient than previous low-cost digital signature designs. The study also presents a low-cost SHA-1 hardware architecture which is the smallest standardised hash function design to date.
Resumo:
Cooperative MIMO (Multiple Input–Multiple Output) allows multiple nodes share their antennas to emulate antenna arrays and transmit or receive cooperatively. It has the ability to increase the capacity for future wireless communication systems and it is particularly suited for ad hoc networks. In this study, based on the transmission procedure of a typical cooperative MIMO system, we first analyze the capacity of single-hop cooperative MIMO systems, and then we derive the optimal resource allocation strategy to maximize the end-to-end capacity in multi-hop cooperative MIMO systems. The study shows three implications. First, only when the intra-cluster channel is better than the inter-cluster channel, cooperative MIMO results in a capacity increment. Second, for a given scenario there is an optimal number of cooperative nodes. For instance, in our study an optimal deployment of three cooperative nodes achieve a capacity increment of 2 bps/Hz when compared with direct transmission. Third, an optimal resource allocation strategy plays a significant role in maximizing end-to-end capacity in multi-hop cooperative MIMO systems. Numerical results show that when optimal resource allocation is applied we achieve more than 20% end-to-end capacity increment in average when compared with an equal resource allocation strategy.