956 resultados para CU(II)
Resumo:
Pivaloyl-L-Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of beta -turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II beta-turn conformations are about 2 kcal mol-1 more stable than Type III structures. A crystallographic study has established the Type II beta-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, beta = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II -turn conformation is stabilized by an intramolecular 4 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are Pro = -57.8°, Pro = 139.3°, Aib = 61.4°, and Aib = 25.1°. The Type II beta-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.
Resumo:
Oxides of the Y-Ba-Cu-O system are found to show onset of superconductivity in the 100–120 K region.
Resumo:
Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This 'stay-green' trait has been related to the nitrogen (N) supply-demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply-demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.
Resumo:
The interaction of antibiotic valinomycin with manganese (II) has been studied using circular dichroism, electron spin resonance and infrared techniques. Results show that Mn(II) forms complexes with valinomycin in both 2:1 (valinomycin-ion-valinomycin sandwich) and 1:1 (equimolar) stoichiometries. The 1:1 type observed here is very different from the well known K+-valinomycin bracelet conformation.
Resumo:
Experimental evidence suggests that high strain rates, stresses, strains and temperatures are experienced near sliding interfaces. The associated microstructural changes are due to several dynamic an interacting phenomena. 3D non-equilibrium molecular dynamics (MD) simulations of sliding were conducted with the aim of understanding the dynamic processes taking place in crystalline tribopairs, with a focus on plastic deformation and microstructural evolution. Embedded atom potentials were employed for simulating sliding of an Fe-Cu tribopair. Sliding velocity, crystal orientation and presence of lattice defects were some of the variables in these simulations. Extensive plastic deformation involving dislocation and twin activity, dynamic recrystallization, amorphization and/or nanocrystallization, mechanical mixing and material transfer were observed. Mechanical mixing in the vicinity of the sliding interface was observed even in the Fe-Cu system, which would cluster under equilibrium conditions, hinting at the ballistic nature of the process. Flow localization was observed at high velocities implying the possible role of adiabatic heating. The presence of preexisting defects (such as dislocations and interfaces) played a pivotal role in determining friction and microstructural evolution. The study also shed light on the relationship between adhesion and plastic deformation, and friction. Comparisons with experiments suggest that such simulations can indeed provide valuable insights that are difficult to obtain from experiments.
Resumo:
Cone penetrometer tests were carried out in a 140 mm diameter triaxial chamber by using a miniature cone of diameter 19.5 mm. The rate of cone penetration was varied from 0.01 mm/s to 0.1 mm/s. Tests were performed in (i) clean sand, (ii) silty sand, and (iii) sand added with fly ash. Two different effective vertical pressures (sigma(nu)), 100 kPa and 300 kPa, were employed. It was noted that for clean and silty sand, the effect of penetration rate on the ultimate tip resistance (q(cu)) of the cone was found to remain only marginal. On the other hand, for sand added with 30% fly ash, the variation in q(cu) values with penetration rate was found to become quite significant. The effect of penetratio rate on q(cu) in all the cases was found to increase with a decrease in the rate of cone penetration. It was noted that with an increase in sigma(nu), the effect of penetration rate on q(cu) was found to become smaller. The effect of the cone penetration rate on q(cu) generally reduces with an increase in the relative density of the material.
Resumo:
Digital Image
Resumo:
EELS studies provide definitive evidence for the hydroxylation of oxygen-covered Cu(110) and Zn(0001) surfaces on interaction with proton donor molecules such as H2O, CH3OH, HCOOH, NH3 and (CH3)2NH. The occurrence of surface hydroxylation is unambigouusly shown by a study of the interaction of H2S and HCl with an oxygen covered Cu(110) surface.
Resumo:
The n=3 member of the Bi1.5Pb0.5 (Ca, Sr) n+1CunO2n+4+δ system has been prepared and characterized by X-ray diffraction and electron microscopy. High-Tc superconductivity in the n=3 member has been established by resistivity, AC susceptibility and microwave absorption measurements. It has a Tc of not, vert, similar 105K compared to a Tc of not, vert, similar 82K of the corresponding n=2 member.
Resumo:
A general theory is evolved for a class of macrogrowth models which possess two independent growth-rates. Relations connecting growth-rates to growth geometry are established and some new growth forms are shown to result for models with passivation or diffusion-controlled rates. The corresponding potentiostatic responses, their small and large time behaviours and peak characteristics are obtained. Numerical transients are also presented. An empirical equation is derived as a special case and an earlier equation is corrected. An interesting stochastic result pertaining to nucleation events in the successive layers is proved.
Resumo:
The coalescence of nearly rigid liquid droplets in a turbulent flow field is viewed as the drainage of a thin film of liquid under the action of a stochastic force representing the effect of turbulence. The force squeezing the drop pair is modelled as a correlated random function of time. The drops are assumed to coalesce once the film thickness becomes smaller than a critical thickness while they are regarded as separated if their distance of separation is larger than a prescribed distance. A semi-analytical solution is derived to determine the coalescence efficiency. The veracity of the solution procedure is established via a Monte-Carlo solution scheme. The model predicts a reversing trend of the dependence of the coalescence efficiency on the drop radii, the film liquid viscosity and the turbulence energy dissipation per unit mass, as the relative fluctuation increases. However, the dependence on physical parameters is weak (especially at high relative fluctuation) so that for the smallest droplets (which are nearly rigid) the coalescence efficiency may be treated as an empirical constant. The predictions of this model are compared with those of a white-noise force model. The results of this paper and those in Muralidhar and Ramkrishna (1986, Ind. Engng Chem. Fundam. 25, 554-56) suggest that dynamic drop deformation is the key factor that influences the coalescence efficiency.
Resumo:
Digital Image
Resumo:
Monochloro-tetra-μ-aryl-carboxylatodiruthenium(III, II) compounds Ru2Cl (O2CAr)4 (Ar = -C6H5; -C6H4-p-OCH3), are prepared and characterized. The compounds have magnetic moments that correspond to three unpaired spins per dimer. The Rusingle bondRu bond order is 2.5 and the ground electronic configuration is σ2π4δ2(δ*π*)3. The visible spectral band is observed at ca 450 nm along with a shoulder near 580 nm in DMF solution. The compounds undergo a one-electron Ru(III)Ru(II) → Ru(II)Ru(II) quasi-reversible reduction in DMF near 0.0 V vs sce.
Resumo:
Surface segregation of Ge is seen in the Cu-5at%Ge alloy with an activation enthalpy equal to 17 kJ/mol. Oxidation of the alloy in the temperature range 400 to 600 K shows the formation of Cu2O and GeO which on further heating in vacuum at 650 K converts to GeO2 with the reduction of Cu2O to Cu.