995 resultados para Bulk carrier cargo ships
Resumo:
In this paper, the impact of interference from multiple licensed transceivers on cognitive underlay single carrier systems is examined. Specifically, the situation is considered in which the secondary network is limited by three key parameters: 1) maximum transmit power at the secondary transmitter, 2) peak interference power at the primary receivers, and 3) interference power from the primary transmitters. For this cognitive underlay single carrier system, the signal-to-interference ratio (SIR) of the secondary network is obtained for transmission over frequency selective fading channels. Based on this, a new closedform expression for the cumulative distribution function of the SIR is evaluated, from which the outage probability and the ergodic capacity are derived. Further insights are established by analyzing the asymptotic outage probability and the asymptotic ergodic capacity in the high transmission power regime. In particular, it is corroborated that the asymptotic outage diversity gain is equal to the multipath gain of the frequency selective channel in the secondary network. The asymptotic ergodic capacity also gives new insight into the additional power cost for different network parameters while maintaining a specified target ergodic capacity. Illustrative numerical examples are presented to validate the outage probability and ergodic capacity under different interference power profiles.
Resumo:
In this paper, the impact of multiple active eavesdroppers on cooperative single carrier systems with multiple relays and multiple destinations is examined. To achieve the secrecy diversity gains in the form of opportunistic selection, a two-stage scheme is proposed for joint relay and destination selection, in which, after the selection of the relay with the minimum effective maximum signal-to-noise ratio (SNR) to a cluster of eavesdroppers, the destination that has the maximum SNR from the chosen relay is selected. In order to accurately assess the secrecy performance, the exact and asymptotic expressions are obtained in closed-form for several security metrics including the secrecy outage probability, the probability of non-zero secrecy rate, and the ergodic secrecy rate in frequency selective fading. Based on the asymptotic analysis, key design parameters such as secrecy diversity gain, secrecy array gain, secrecy multiplexing gain, and power cost are characterized, from which new insights are drawn. Moreover, it is concluded that secrecy performance limits occur when the average received power at the eavesdropper is proportional to the counterpart at the destination. Specifically, for the secrecy outage probability, it is confirmed that the secrecy diversity gain collapses to zero with outage floor, whereas for the ergodic secrecy rate, it is confirmed confirm that its slope collapses to zero with capacity ceiling.
Resumo:
This letter investigates performance enhancement by the concept of multi-carrier index keying in orthogonal frequency division multiplexing (OFDM) systems. For the performance evaluation, a tight closed-form approximation of the bit error rate (BER) is derived introducing the expression for the number of bit errors occurring in both the index domain and the complex domain, in the presence of both imperfect and perfect detection of active multi-carrier indices. The accuracy of the derived BER results for various cases are validated using simulations, which can provide accuracy within 1 dB at favorable channels.
Resumo:
Resumo:
Attosecond science is enabled by the ability to convert femtosecond near-infrared laser light into coherent harmonics in the extreme ultraviolet spectral range. While attosecond sources have been utilized in experiments that have not demanded high intensities, substantially higher photon flux would provide a natural link to the next significant experimental breakthrough. Numerical simulations of dual-gas high harmonic generation indicate that the output in the cutoff spectral region can be selectively enhanced without disturbing the single-atom gating mechanism. Here, we summarize the results of these simulations and present first experimental findings to support these predictions. (c) 2012 Optical Society of America
Resumo:
Many powders and particulate solids are cohesive in nature and the strength often exhibits dependence on the consolidation stress. As a result, the stress history in the material leading up to a handling scenario needs to be considered when evaluating its handleability. This paper outlines the development of a DEM contact model accounting for plasticity and adhesion force, which is shown to be suitable for modelling the stress history dependent cohesive strength. The model was used to simulate the confined consolidation and the subsequent unconfined loading of iron ore fines with particle sizes up to 1.18mm. The predicted flow function was found to be comparable to the experimental results.
Resumo:
In this paper, we propose cyclic prefix single carrier (CP-SC) full-duplex transmission in cooperative spectrum sharing to achieve multipath diversity gain and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the peak interference power constraint at the PUs are concurrently inflicted on the transmit power at the secondary source (SS) and the secondary relays (SRs); and 2) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays. Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively evaluate the exact and the asymptotic outage probability for several relay selection policies in frequency selective fading channels. Our results manifest that a zero diversity gain is obtained with full-duplex.
Resumo:
Many researchers have investigated the flow and segregation behaviour in model scale experimental silos at normal gravity conditions. However it is known that the stresses experienced by the bulk solid in industrial silos are high when compared to model silos. Therefore it is important to understand the effect of stress level on flow and segregation behaviour and establish the scaling laws governing this behaviour. The objective of this paper is to understand the effect of gravity on the flow and segregation behaviour of bulk solids in a silo centrifuge model. The materials used were two mixtures composed of Polyamide and glass beads. The discharge of two bi-disperse bulk solids in a silo centrifuge model were recorded under accelerations ranging from 1g to 15g. The velocity distribution during discharge was evaluated using Particle Image Velocimetry (PIV) techniques and the concentration distribution of large and small particles were obtained by imaging processing techniques. The flow and segregation behaviour at high gravities were then quantified and compared with the empirical equations available in the literature.
Resumo:
In this paper, we propose a sparse multi-carrier index keying (MCIK) method for orthogonal frequency division multiplexing (OFDM) system, which uses the indices of sparse sub-carriers to transmit the data, and improve the performance
of signal detection in highly correlated sub-carriers. Although a receiver is able to exploit a power gain with precoding in OFDM, the sensitivity of the signal detection is usually high as the orthogonality is not retained in highly dispersive
environments. To overcome this, we focus on developing the trade-off between the sparsity of the MCIK, correlation, and performances, analyzing the average probability of the error propagation imposed by incorrect index detection over highly correlated sub-carriers. In asymptotic cases, we are able to see how sparsity of MCIK should be designed in order to perform superior to the classical OFDM system. Based on this feature, sparse MCIK based OFDM is a better choice for low detection errors in highly correlated sub-carriers.
Resumo:
Clathrin-mediated endocytosis involves cargo selection and membrane budding into vesicles with the aid of a protein coat. Formation of invaginated pits on the plasma membrane and subsequent budding of vesicles is an energetically demanding process that involves the cooperation of clathrin with many different proteins. Here we investigate the role of the brain-enriched protein epsin 1 in this process. Epsin is targeted to areas of endocytosis by binding the membrane lipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)). We show here that epsin 1 directly modifies membrane curvature on binding to PtdIns(4,5)P(2) in conjunction with clathrin polymerization. We have discovered that formation of an amphipathic alpha-helix in epsin is coupled to PtdIns(4,5)P(2) binding. Mutation of residues on the hydrophobic region of this helix abolishes the ability to curve membranes. We propose that this helix is inserted into one leaflet of the lipid bilayer, inducing curvature. On lipid monolayers epsin alone is sufficient to facilitate the formation of clathrin-coated invaginations.
Resumo:
Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterisation of the total secretome of this zoonotic parasite. Fasciola secretes at least two sub-populations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialised cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic datasets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular machinery required for EV biogenesis is constitutively expressed across the intra-mammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack.