976 resultados para Biology, Genetics|Health Sciences, Ophthalmology
Resumo:
Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patients fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.
Resumo:
The Xylella fastidiosa comparative genomic database is a scientific resource with the aim to provide a user-friendly interface for accessing high-quality manually curated genomic annotation and comparative sequence analysis, as well as for identifying and mapping prophage-like elements, a marked feature of Xylella genomes. Here we describe a database and tools for exploring the biology of this important plant pathogen. The hallmarks of this database are the high quality genomic annotation, the functional and comparative genomic analysis and the identification and mapping of prophage-like elements. It is available from web site http://www.xylella.lncc.br.
Resumo:
The lack of effective tools have hampered our ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical framework that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 X 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10000-year-old genets may be common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasion are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task.
Resumo:
Many pregnancy and birth cohort studies investigate the health effects of early-life environmental contaminant exposure. An overview of existing studies and their data is needed to improve collaboration, harmonization, and future project planning.
Resumo:
Teeth are brittle and highly susceptible to cracking. We propose that observations of such cracking can be used as a diagnostic tool for predicting bite force and inferring tooth function in living and fossil mammals. Laboratory tests on model tooth structures and extracted human teeth in simulated biting identify the principal fracture modes in enamel. Examination of museum specimens reveals the presence of similar fractures in a wide range of vertebrates, suggesting that cracks extended during ingestion or mastication. The use of ‘fracture mechanics’ from materials engineering provides elegant relations for quantifying critical bite forces in terms of characteristic tooth size and enamel thickness. The role of enamel microstructure in determining how cracks initiate and propagate within the enamel (and beyond) is discussed. The picture emerges of teeth as damage-tolerant structures, full of internal weaknesses and defects and yet able to contain the expansion of seemingly precarious cracks and fissures within the enamel shell. How the findings impact on dietary pressures forms an undercurrent of the study.
Resumo:
This study examines the inter-relation between enamel morphology and crack resistance by sectioning extracted human molars after loading to fracture. Cracks appear to initiate from tufts, hypocalcified defects at the enamel–dentin junction, and grow longitudinally around the enamel coat to produce failure. Microindentation corner cracks placed next to the tufts in the sections deflect along the tuft interfaces and occasionally penetrate into the adjacent enamel. Although they constitute weak interfaces, the tufts are nevertheless filled with organic matter, and appear to be stabilized against easy extension by self-healing, as well as by mutual stress-shielding and decussation, accounting at least in part for the capacity of tooth enamel to survive high functional forces.
Resumo:
A comparative study has been made of human and great ape molar tooth enamel. Nanoindentation techniques are used to map profiles of elastic modulus and hardness across sections from the enamel–dentin junction to the outer tooth surface. The measured data profiles overlap between species, suggesting a degree of commonality in material properties. Using established deformation and fracture relations, critical loads to produce function-threatening damage in the enamel of each species are calculated for characteristic tooth sizes and enamel thicknesses. The results suggest that differences in load-bearing capacity of molar teeth in primates are less a function of underlying material properties than of morphology.
Resumo:
An experimental simulation study is made to determine the effects of occlusal wear on the capacity of teeth to resist fracture. Tests are carried out on model dome structures, using glass shells to represent enamel and epoxy filler to represent dentin. The top of the domes are ground and polished to produce flat surfaces of prescribed depths relative to shell thickness. The worn surfaces are then loaded axially with a hard sphere, or a hard or soft flat indenter, to represent extremes of food contacts. The loads required to drive longitudinal cracks around the side walls of the enamel to failure are measured as a function of relative wear depth. It is shown that increased wear can inhibit or enhance load-bearing capacity, depending on the nature of the contact. The results are discussed in the context of biological evolutionary pressures.
Resumo:
OBJECTIVES: There is concern regarding the possible health effects of cellular telephone use. We examined whether the source of funding of studies of the effects of low-level radiofrequency radiation is associated with the results of studies. We conducted a systematic review of studies of controlled exposure to radiofrequency radiation with health-related outcomes (electroencephalogram, cognitive or cardiovascular function, hormone levels, symptoms, and subjective well-being). DATA SOURCES: We searched EMBASE, Medline, and a specialist database in February 2005 and scrutinized reference lists from relevant publications. DATA EXTRACTION: Data on the source of funding, study design, methodologic quality, and other study characteristics were extracted. The primary outcome was the reporting of at least one statistically significant association between the exposure and a health-related outcome. Data were analyzed using logistic regression models. DATA SYNTHESIS: Of 59 studies, 12 (20%) were funded exclusively by the telecommunications industry, 11 (19%) were funded by public agencies or charities, 14 (24%) had mixed funding (including industry), and in 22 (37%) the source of funding was not reported. Studies funded exclusively by industry reported the largest number of outcomes, but were least likely to report a statistically significant result: The odds ratio was 0.11 (95% confidence interval, 0.02-0.78), compared with studies funded by public agencies or charities. This finding was not materially altered in analyses adjusted for the number of outcomes reported, study quality, and other factors. CONCLUSIONS: The interpretation of results from studies of health effects of radiofrequency radiation should take sponsorship into account.
Resumo:
Ethylene has myriad roles as a plant hormone, ranging from senescence and defending against pathogen attacks to fruit ripening and interactions with other hormones. It has been shown to increase cambial activity in poplar, but the effect on wood formation in Arabidopsis hypocotyl has not previously been studied. The Auxin-Regulated Gene involved in Organ Size (ARGOS), which increases organ size by lengthening the time for cell division, was found to be upregulated by ethylene. We tested the effect of ethylene treatment at 10 and 100 µM ACC on three genotypes of Arabidopsis, Col0 (wild-type), an ARGOS deficient mutant (argos), and ein3-1, an ethylene insensitive mutant. ARGOS expression analysis with qPCR indicated that ACC does induce ARGOS and ARGOS-LIKE (ARL) in the hypocotyl. As seen in poplar, ethylene also decreases stem elongation.Histochemical staining, showed that ethylene changes the way secondary xylem lignifies, causing gaps in lignification around the outer edge of secondary xylem. Our results also implied that ethylene treatment changes the proportion of secondary to total xylem, resulting in less secondary, whereas in poplar, ethylene treatment caused an increase.