948 resultados para Bayesian
Resumo:
This paper describes a methodology to estimate the coefficients, to test specification hypothesesand to conduct policy exercises in multi-country VAR models with cross unit interdependencies, unit specific dynamics and time variations in the coefficients. The framework of analysis is Bayesian: a prior flexibly reduces the dimensionality of the model and puts structure on the time variations; MCMC methods are used to obtain posterior distributions; and marginal likelihoods to check the fit of various specifications. Impulse responses and conditional forecasts are obtained with the output of MCMC routine. The transmission of certain shocks across countries is analyzed.
Resumo:
This paper sets up and estimates a structuralmodel of Australia as a small open economyusing Bayesian techniques. Unlike other recentstudies, the paper shows that a small microfoundedmodel can capture the open economydimensions quite well. Specifically, the modelattributes a substantial fraction of the volatilityof domestic output and inflation to foreigndisturbances, close to what is suggested by unrestrictedVAR studies. The paper also investigatesthe effects of various exogenous shockson the Australian economy.
Resumo:
We investigate macroeconomic fluctuations in the Mediterranean basin, their similarities and convergence. A model with four indicators, roughly covering theWest, the East and the Middle East and the North Africa portions of theMediterranean, characterizes well the historical experience since the early 1980.Idiosyncratic causes still dominate domestic cyclical fluctuations in many countries. Convergence and divergence coexist are local and transitory. The cyclicaloutlook for the next few years is rosier for the East than for the West.
Resumo:
This paper analyzes the problem of matching heterogeneous agents in aBayesian learning model. One agent gives a noisy signal to another agent,who is responsible for learning. If production has a strong informationalcomponent, a phase of cross-matching occurs, so that agents of low knowledgecatch up with those of higher one. It is shown that:(i) a greater informational component in production makes cross-matchingmore likely;(ii) as the new technology is mastered, production becomes relatively morephysical and less informational;(iii) a greater dispersion of the ability to learn and transfer informationmakes self-matching more likely; and(iv) self-matching leads to more self-matching, whereas cross-matching canmake less productive agents overtake more productive ones.
Resumo:
Gastroschisis is an abdominal wall defect more prevalent in offspring of young mothers. It is known to be increasing in prevalence despite the general decrease in the proportion of births to young European women. We investigated whether the increase in prevalence was restricted to the high-risk younger mothers. We analysed 936 cases of gastroschisis from 25 population-based registries in 15 European countries, 1980-2002. We fitted a Bayesian Hierarchical Model which allowed us to estimate trend, to estimate which registries were significantly different from the common distribution, and to adjust simultaneously for maternal age, time (in grouped years) and the random variation between registries. The maternal age-standardised prevalence (standardised to the year 2000 European maternal age structure) increased almost fourfold from 0.54 [95% Credible Interval (CrI) 0.37, 0.75] per 10,000 births in 1980-84 to 2.12 [95% CrI 1.85, 2.40] per 10,000 births in 2000-02. The relative risk of gastroschisis for mothers <20 years of age in 1995-2002 was 7.0 [95% CrI 5.6, 8.7]. There were geographical differences within Europe, with higher rates of gastroschisis in the UK, and lower rates in Italy after adjusting for maternal age. After standardising for regional variation, our results showed that the increase in risk over time was the same for mothers of all ages--the increase for mothers <20 years was 3.96-fold compared with an increase of 3.95-fold for mothers in the other age groups. These findings indicate that the phenomenon of increasing gastroschisis prevalence is not restricted to younger mothers only.
Resumo:
This paper investigates what has caused output and inflation volatility to fall in the USusing a small scale structural model using Bayesian techniques and rolling samples. Thereare instabilities in the posterior of the parameters describing the private sector, the policyrule and the standard deviation of the shocks. Results are robust to the specification ofthe policy rule. Changes in the parameters describing the private sector are the largest,but those of the policy rule and the covariance matrix of the shocks explain the changes most.
Resumo:
We study the issue of income convergence across countries and regions witha Bayesian estimator which allows us to use information in an efficient andflexible way. We argue that the very slow convergence rates to a commonlevel of per-capita income found, e.g., by Barro and Xavier Sala-i-Martin,is due to a 'fixed effect bias' that their cross-sectional analysisintroduces in the results. Our approach permits the estimation of differentconvergence rates to different steady states for each cross sectional unit.When this diversity is allowed, we find that convergence of each unit to(its own) steady state income level is much faster than previously estimatedbut that cross sectional differences persist: inequalities will only bereduced by a small amount by the passage of time. The cross countrydistribution of the steady state is largely explained by the cross countrydistribution of initial conditions.
Resumo:
We study the effect of regional expenditure and revenue shocks on price differentials for47 US states and 9 EU countries. We identify shocks using sign restrictions on the dynamicsof deficits and output and construct two estimates for structural price differentials dynamics which optimally weight the information contained in the data for all units. Fiscal shocks explain between 14 and 23 percent of the variability of price differentials both in the US and in the EU. On average, expansionary fiscal disturbances produce positive price differential responses while distortionary balance budget shocks produce negative price differential responses. In a number of units, price differential responses to expansionary fiscal shocks are negative. Spillovers and labor supply effects partially explain this pattern while geographical, political, and economic indicators do not.
Resumo:
To provide a quantitative support to the handwriting evidence evaluation, a new method was developed through the computation of a likelihood ratio based on a Bayesian approach. In the present paper, the methodology is briefly described and applied to data collected within a simulated case of a threatening letter. Fourier descriptors are used to characterise the shape of loops of handwritten characters "a" of the true writer of the threatening letter, and: 1) with reference characters "a" of the true writer of the threatening letter, and then 2) with characters "a" of a writer who did not write the threatening letter. The findings support that the probabilistic methodology correctly supports either the hypothesis of authorship or the alternative hypothesis. Further developments will enable the handwriting examiner to use this methodology as a helpful assistance to assess the strength of evidence in handwriting casework.
Resumo:
We investigate on-line prediction of individual sequences. Given a class of predictors, the goal is to predict as well as the best predictor in the class, where the loss is measured by the self information (logarithmic) loss function. The excess loss (regret) is closely related to the redundancy of the associated lossless universal code. Using Shtarkov's theorem and tools from empirical process theory, we prove a general upper bound on the best possible (minimax) regret. The bound depends on certain metric properties of the class of predictors. We apply the bound to both parametric and nonparametric classes ofpredictors. Finally, we point out a suboptimal behavior of the popular Bayesian weighted average algorithm.
Resumo:
Whether or not species participating in specialized and obligate interactions display similar and simultaneous demographic variations at the intraspecific level remains an open question in phylogeography. In the present study, we used the mutualistic nursery pollination occurring between the European globeflower Trollius europaeus and its specialized pollinators in the genus Chiastocheta as a case study. Explicitly, we investigated if the phylogeographies of the pollinating flies are significantly different from the expectation under a scenario of plant-insect congruence. Based on a large-scale sampling, we first used mitochondrial data to infer the phylogeographical histories of each fly species. Then, we defined phylogeographical scenarios of congruence with the plant history, and used maximum likelihood and Bayesian approaches to test for plant-insect phylogeographical congruence for the three Chiastocheta species. We show that the phylogeographical histories of the three fly species differ. Only Chiastocheta lophota and Chiastocheta dentifera display strong spatial genetic structures, which do not appear to be statistically different from those expected under scenarios of phylogeographical congruence with the plant. The results of the present study indicate that the fly species responded in independent and different ways to shared evolutionary forces, displaying varying levels of congruence with the plant genetic structure
Resumo:
ABSTRACT The role of chromosomal rearrangements in the speciation process is much debated and many theoretical models have been developed. The shrews of the Sorex araneus group offer extraordinary opportunities to study the relationship between chromosomal variation and speciation. Indeed, this group of morphologically very similar species received a great deal of attention due to its karyotypic variability, which is mainly attributed to Robertsonian fusions. To explore the impact of karyotypic changes on genetic differentiation, we first studied the relationship between genetic and karyotypic structure among Alpine species and among chromosome races of the S. araneus group using Bayesian admixture analyses. The results of these analyses confirmed the taxonomic status of the studied species even though introgression can still be detected between species. Moreover, the strong spatial sub-structure highlighted the role of historical factors (e.g. geographical isolation) on genetic structure. Next, we studied gene flow at the chromosome level to address the question of the impact of chromosomal rearrangements on genetic differentiation. We used flow sorted chromosomes from three different karyotypic taxa of the S. araneus group to map microsatellite markers at the chromosóme arm level. We have been able to map 24 markers and to show that the karyotypic organisation of these taxa is well conserved, which suggests that these markers can be used for further inter-taxa studies. A general prediction of chromosomal speciation models is that genetic differentiation between two taxa should be larger across rearranged chromosomes than across chromosomes common to both taxa. We combined two approaches using mapped microsatellites to test this prediction. First, we studied the genetic differentiation among five shrew taxa placed at different evolutionary levels (i.e. within and among species). In this large scale study, we detected an overall significant difference in genetic structure between rearranged vs. common chromosomes. Moreover, this effect varied among pairwise comparisons, which allowed us to differentiate the role of the karyotypic complexity of hybrids and of the evolutionary divergence between taxa. Secondly, we compared the levels of gene flow measured across common vs. rearranged chromosomes in two karyotypically different hybrid zones (strong vs. low complexity of hybrids), which show similar levels of genetic structure. We detected a significantly stronger genetic structure across rearranged chromosomes in the hybrid zone showing the highest level of hybrid complexity. The large variance observed among loci suggested that other factors, such as the position of markers within the chromosome, also certainly affects genetic structure. In conclusion, our results strongly support the role of chromosomal rearrangements in the reproductive barrier and suggest their importance in speciation process of the S. araneus group. RESUME Le rôle des réarrangements chromosomiques dans les processus de spéciation est fortement débattu et de nombreux modèles théoriques ont été développés sur le sujet. Les musaraignes du groupe Sorex araneus présentent de nombreuses opportunités pour étudier les relations entre les variations chromosomiques et la spéciation. En effet, ce groupe d'espèces morphologiquement très proches a attiré l'attention des chercheurs en raison de sa variabilité caryotypique principalement attribuée à des fusions Robertsoniennes. Pour explorer l'impact des changements caryotypiques sur la différenciation génétique, nous avons tout d'abord étudié les relations entre la structure génétique et caryotypique de races chromosomiques et d'espèces alpine du groupe S. araneus en utilisant des analyses Bayesiennes d' « admixture ». Les résultats de ces analyses ont confirmé le statut taxonomique des espèces étudiées bien que nous ayons détecté de l'introgression entre espèces. L'observation d'une sous structure spatiale relativement forte souligne l'importance des facteurs historiques (telle que l'isolation géographique) sur la structure génétique de ce groupe. Ensuite, nous avons étudié le flux de gène au niveau des chromosomes pour aborder de manière directe la question de l'impact des réarrangements chromosomiques sur la différenciation génétique. En conséquence, nous avons utilisé des tris de chromosomes de trois taxons du groupe S. araneus pour localiser des marqueurs microsatellites au niveau du bras chromosomique. Au cours de cette étude, nous avons pu localiser 24 marqueurs et montrer une forte conservation dans l'organisation du caryotype de ces taxa. Ce résultat suggère que leur utilisation est appropriée pour des études entre taxa. Une prédiction générale à tous les modèles de spéciation chromosomique correspond à la plus grande différenciation génétique des chromosomes réarrangés que des chromosomes communs. Nous avons combiné deux approches utilisant des microsatellites localisés au niveau du bras chromosomique pour tester cette prédiction. Premièrement, nous avons étudié la différenciation génétique entre cinq taxa du groupe S. araneus se trouvant à des niveaux évolutifs différents (i.e. à l'intérieur et entre espèce). Au cours de cette étude, nous avons détecté une différenciation globale significativement plus élevée sur les chromosomes réarrangés. Cet effet varie entre les comparaisons, ce qui nous a permis de souligner le rôle de la complexité caryotypique des hybrides et du niveau de divergence évolutive entre taxa. Deuxièmement, nous avons comparé le flux de gènes des chromosomes communs et réarrangés dans deux zones d'hybridation caryotypiquement différentes (forte vs. Faible complexité des hybrides) mais présentant un niveau de différenciation génétique similaire. Ceci nous a permis de détecter une structure génétique significativement plus élevée sur les chromosomes réarrangés au centre de la zone d'hybridation présentant la plus grande complexité caryotypic. La forte variance observée entre loci souligne en outre le fait que d'autres facteurs, tel que la position du marqueur sur le chromosome, affectent probablement aussi la structure génétique mesurée. En conclusion, nos résultats supportent fortement le rôle des réarrangements chromosomiques dans la barrière reproductive entre espèces ainsi que leur importance dans les processus de spéciation des musaraignes du groupe S. araneus.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. The paper considers a data driven approach in modelling uncertainty in spatial predictions. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic features and describe stochastic variability and non-uniqueness of spatial properties. It is able to capture and preserve key spatial dependencies such as connectivity, which is often difficult to achieve with two-point geostatistical models. Semi-supervised SVR is designed to integrate various kinds of conditioning data and learn dependences from them. A stochastic semi-supervised SVR model is integrated into a Bayesian framework to quantify uncertainty with multiple models fitted to dynamic observations. The developed approach is illustrated with a reservoir case study. The resulting probabilistic production forecasts are described by uncertainty envelopes.
Resumo:
This paper discusses the analysis of cases in which the inclusion or exclusion of a particular suspect, as a possible contributor to a DNA mixture, depends on the value of a variable (the number of contributors) that cannot be determined with certainty. It offers alternative ways to deal with such cases, including sensitivity analysis and object-oriented Bayesian networks, that separate uncertainty about the inclusion of the suspect from uncertainty about other variables. The paper presents a case study in which the value of DNA evidence varies radically depending on the number of contributors to a DNA mixture: if there are two contributors, the suspect is excluded; if there are three or more, the suspect is included; but the number of contributors cannot be determined with certainty. It shows how an object-oriented Bayesian network can accommodate and integrate varying perspectives on the unknown variable and how it can reduce the potential for bias by directing attention to relevant considerations and distinguishing different sources of uncertainty. It also discusses the challenge of presenting such evidence to lay audiences.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.