997 resultados para B. mysticetus TL
Resumo:
A phenolphthalein immobilized cellulose membrane for an optical pH sensor was described. The phenolphthalein was first reacted with the formaldehyde to produce a series of prepolymers with many hydroxymethyl groups. In this paper, the prepolymers was abbreviated to phenolphthalein-formaldehyde (PPF). Then the PPF was covalently immobilized to the diacetylcellulose membrane via hydroxymethyl groups. Finally the membrane was hydrolyzed in the 0.1 M NaOH solution for 24 h to reduce the response time. Advantageous features of the pH-sensitive membrane include (a) a large dynamic range from pH 8.0 to 12.50, or even broader, (b) rapid response time (2-30 s), (c) easy of fabrication, and (d) a promising material for determination of high pH values. The immobilized PPF has a broader dynamic range from 8.0 to 12.50 than the free phenolphthalein from pH 8.0 to 11.0, and this was due to the newly produced methylenes in our investigation.
Resumo:
A novel structural triblock copolymer of poly(gamma-benzyl-L-glutamic acid)-b-poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PBLG-PEO-PCL) was synthesized by a new approach in the following three steps: (1) sequential anionic ring opening polymerization (ROP) of ethylene oxide and epsilon-caprolactone with an acetonitrile/potassium naphthalene initiator system to obtain a diblock copolymer CN-PEO-PCL with a cyano end-group; (2) conversion of the CN end-group into NH2 end-group by hydrogenation to obtain NH2-PEO-PCL; (3) ROP of gamma-benzyl-L-glutamate-N-carboxyanhydrides (Bz-L-GluNCA) with NH2-PEO-PCL as macroinitiator to obtain the target triblock copolymer. The structures from CN-PEO precursor to the triblock copolymers were confirmed by FT-IR and H-1 NMR spectroscopy, and their molecular weights were measured by gel permeation chromatography. The monomer of Bz-L-GluNCA can react almost quantitatively with the amino end-groups of NH2-PEO-PCL macroinitiator by ROP.
Resumo:
研究了 1 苯基 3 甲基 4 苯甲酰基 -吡唑酮 5 (HPMBP)和中性有机磷 (膦 )类萃取剂Cyanex 4 71X(TIBPS ,B)在硝酸介质中对稀土元素La 的萃取 ,用斜率法和恒摩尔法探讨了萃取机理 ,确定了萃合物的组成为La(NO3 ) 2 ·PMBP·B ,计算了萃取平衡常数。比较了HPMBP与Cyanex 4 71X、Cyanex 92 1、Cyanex 92 3、Cyanex 92 5、DEH/EHP、P35 0及TBP的单独及混合体系萃取La 的性能 ,结果表明 :所有混合体系对La 均有协同效应 ,其中HPMBP与Cyanex 92 3、Cyanex 92 1、Cyanex 92 5的混合体系是萃取La 的有效体系。
Resumo:
The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.
Resumo:
制备出两类含烯丙基席夫碱的ⅣB配合物[R(N=CH鄄C6H3(3鄄R)O)2MCl2(R=Allyl;R'=Pheny;M=Ti(6),M=Zr(7);R=tert鄄Butyl;R'=Allyl;M=Ti(8);M=Zr(9)),配合物(7)的单晶结构显示围绕中心金属的配合构型为畸变八面体,其中2个氯原子处于顺式位置。配合物(7,9)中的烯丙基与苯乙烯共聚可得到高分子化烯烃聚合催化剂(PSC1;PSC2)。在助催化剂(MMAO)存在下,配合物9和相应的高分子化催化剂(PSC2)显示出很高的催化乙烯聚合的活性。
Resumo:
Single-walled carbon nanotubes (SWNTs) have been considered as the leading candidate for nano-device applications ranging from gene therapy and novel drug delivery to membrane separations. The miniaturization of DNA-nanotube devices for biological applications requires fully understanding DNA-nanotube interaction mechanism. We report here, for the first time, that DNA destabilization and conformational transition induced by SWNTs are sequence-dependent. Contrasting changes for SWNTs binding to poly[dGdC]:poly[dGdC] and poly[dAdT]:poly[dAdT] were observed. For GC homopolymer, DNA melting temperature was decreased 40 degrees C by SWNTs but no change for AT-DNA. SWNTs can induce B-A transition for GC-DNA but AT-DNA resisted the transition. Our circular dichroism, competitive binding assay and triplex destabilization studies provide direct evidence that SWNTs induce DNA B-A transition in solution and they bind to the DNA major groove with GC preference.
Resumo:
We report here that a cubane-like europium-L-aspartic acid complex at physiological pH can discriminate between DNA structures as judged by the comparison of thermal denaturation, binding stoichiometry, temperature-dependent fluorescence enhancement, and circular dichroism and gel electrophoresis studies. This complex can selectively stabilize non-B-form DNA polydApolydT but destabilize polydGdCpolydGdC and polydAdTpolydAdT. Further studies show that this complex can convert B-form polydGdCpolydGdC to Z-form under the low salt condition at physiological temperature 37 degrees C, and the transition is reversible, similar to RNA polymerase, which turns unwound DNA into Z-DNA and converts it back to B-DNA after transcription. The potential uses of a left-handed helix-selective probe in biology are obvious. Z-DNA is a transient structure and does not exist as a stable feature of the double helix. Therefore, probing this transient structure with a metal-amino acid complex under the low salt condition at physiological temperature would provide insights into their transitions in vivo and are of great interest.
Resumo:
The effect of crystallization on the lamellar orientation of poly( styrene)-b-poly(L-lactide) (PS-PLLA) semicrystalline diblock copolymer in thin films has been investigated by atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In the melt state, microphase separation leads to a symmetric wetting structure with PLLA blocks located at both polymer/substrate and polymer/air interfaces. The lamellar period is equal to the long period L in bulk determined by small-angle X-ray scattering (SAXS). Symmetric wetting structure formed in the melt state provides a model structure to study the crystallization of PLLA monolayer tethered on glassy (T-c < T-g,T-PS) or rubber (T-c > T-g,T-PS) PS substrate. In both cases, it is found that the crystallization of PLLA results in a "sandwich" structure with amorphous PS layer located at both folding surfaces. For T-c <= T-g,T- PS, the crystallization induces a transition of the lamellar orientation from parallel to perpendicular to substrate in between and front of the crystals. In addition, the depletion of materials around the crystals leads to the formation of holes of 1/2 L, leaving the adsorbed monolayer exposure at the bottom of the holes.
Resumo:
Advances in tissue engineering require biofunctional scaffolds that can provide not only physical support for cells but also chemical and biological cues needed in forming functional tissues. To achieve this goal, a novel RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) (PEG-PLA-PGL/RGD) was synthesized in four steps (1) to prepare diblock copolymer PEG-PLA-OH and to convert its -OH end group into -NH2 (to obtain PEG-PLA-NH2), (2) to prepare triblock copolymer PEG-PLA-PBGL by ring-opening polymerization of NCA (N-carboxyanhydride) derived from benzyl glutamate with diblock copolymer PEG-PLA-NH2 as macroinitiator, (3) to remove the protective benzyl groups by catalytic hydrogenation of PEGPLA-PBGL to obtain PEG-PLA-PGL, and (4) to react RGD (arginine-glycine-(aspartic amide)) with the carboxyl groups of the PEG-PLA-PGL. The structures of PEG-PLA-PGL/RGD and its precursors were confirmed by H-1 NMR, FT-IR, amino acid analysis, and XPS analysis. Addition of 5 wt % PEG-PLA-PGL/RGD into a PLGA matrix significantly improved the surface wettability of the blend films and the adhesion and proliferation behavior of human chondrocytes and 3T3 cells on the blend films. Therefore, the novel RGD-grafted triblock copolymer is expected to find application in cell or tissue engineering.
Resumo:
近年来,有机薄膜晶体管(OTFTs)因其成本低、加工简便,特别适用于制备大面积柔性器件而引起人们的广泛关注[1].并苯类化合物和噻吩衍生物是目前最重要的两类高迁移率OTFT材料.由并五苯制备的多晶OTFTs器件迁移率可达到5cm2/(V·s)[2];烷基修饰齐聚噻吩的场致迁移率也可达到非晶硅[0·1~1cm2/(V·s)]的水平[3].但是,这两类材料具有较窄的能隙和较高的最高被占分子轨道(HOMO)能级,容易与空气中的氧气和水发生作用,所制备的器件在空气中衰减较快,并且并苯类化合物对光也非常敏感,限制了其应用范围[4~6].因此,制备稳定的高迁移率有机半导体材料是有机光电子研究领域的重要课题之一.制备稳定的高迁移率有机半导体材料的途径包括用较稳定的芳香基团对噻吩齐聚物进行封端,以增大能隙和降低HOMO能级[7].菲类化合物是并苯类化合物的异构体,具有较好的光稳定性[8].[3,2-b]并二噻吩是一种平面稠环分子,与2,2′-二噻吩相比,HOMO能级相对降低,因而具有相对好的稳定性[9].本文合成了2,5-二(2-菲基)-[3,2-b]并二噻吩(PhTT),表征了其基本的物理和化学性质,制备了相应的有机薄膜晶...
Resumo:
In the title compound, C9H8N2O2, two crystallographically independent molecules form a dimer structure, in which two N-H center dot center dot center dot N hydrogen bonds generate an intermolecular R-2(2)( 8) ring.
Resumo:
In the asymmetric unit of the title compound, C9H8N2O2, there are two crystallographically independent molecules, each of which forms a dimer, via N-H center dot center dot center dot O hydrogen bonds, with an inversion-related molecule.
Resumo:
The surface morphology and crystallization behavior of a weakly segregated symmetric diblock copolymer, poly(styrene-b-6-caprolactone) (PS-b-PCL), in thin films were investigated by optical microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). When the samples were annealed in the molten state, surface-induced ordering, that is, relief structures with uniform thickness or droplets in the adsorbed monolayer, were observed depending on the annealing temperature. The polar PCL block preferred to wet the surface of a silicon wafer, while the PS block wet the air interface. This asymmetric wetting behavior led to the adsorbed monolayer with a PCL block layer having a thickness of around 4.0 nm. The crystallization of PCL blocks could overwhelm the microphase-separated structure because of the weak segregation. In situ observation of crystal growth indicated that the nucleation process preferred to occur at the edge of the thick parts of the film, that is, the relief structures or droplets. The crystal growth rate was presented by the time dependence of the distance between the tip of crystal clusters and the edge. At 22 and 17 degreesC, the average crystal growth rates were 55 +/- 10 and 18 +/- 4 nm/min, respectively.
Resumo:
In this work, a method was established for the determination of impurities in high purity tellurium by inductively coupled plasma mass spectrometry (ICP-MS) after Fe(OH)(3) coprecipitation. After comparison of coprecipitation ability and separation efficiency between Fe(OH), and Al(OH)(3), Fe(OH)(3) was chosen as the precipitate. A separation factor of 160 for 200 mg tellurium was obtained under conditions of pH 9 and 2 mg of Fe3(+). The 13 elements, such as Bi, Sn, Pb, In, Tl, Cd, Cu, Co, Ni, Zn, Ti, Be and Zr, could be almost completely coprecipitated under these conditions. In addition, Te memory effect imposed on the ICP-MS instrument was assessed, as well as Te matrix effect that caused the low recovery of Ga, As, Sb and V in real sample was discussed. Finally, the method was evaluated through recovery test and was applied to practical sample analysis, with detection limits of most of the elements being below 0.15 mug g(-1) and R.S.D. below or at approximately 10%, which indicated that this method could fully satisfy the requirements for analysis of 99.999% similar to 99.9999% high purity Te.
Resumo:
Rhodamine B (RB)-doped organic-inorganic silica films and their patterning were fabricated by a sol-gel process combined with a soft lithography. The resulted film samples were characterized by atomic force microscope (AFM), optical microscope and UV/Vis absorption and photoluminescence excitation and emission spectra. The effects of the concentration of the RB dye and heat treatment temperature on the optical properties of the hybrid silica films have been studied. Four kinds of patterning structures with film line widths of 5, 10, 20 and 50 mum have been obtained by micromolding in capillaries by a soft lithography technique. The RB-doped hybrid silica films present a red color, with an excitation and emission bands around 564 and 585 mum, respectively. With increasing the RB concentration, the emission intensity of the RB-doped hybrid silica films increases and the emission maximum presents a red shift. The emission intensity of the films decreases with increasing the heat treatment temperatures.