963 resultados para B. Composite
Resumo:
Três parcelas experimentais de Bertholletia excelsa (Castanha-do- Brasil) foram implantadas na Estação Experimental de Silvicultura Tropical do INPA/Manaus, em 1980, com o objetivo de obter dados sobre o crescimento da espécie com fins de produção de madeira e frutos. O sistema de plantio adotado foi em plena abertura, sobre Latossolo vermelho-amarelo, no espaçamento de 3,0 x 3,0 m. Foram observados, aos 10 anos, os seguintes resultados, diâmetro médio (DAP) de 13,9 cm e a altura total média de 15,41 m; os valores máximos de diâmetros e alturas encontrados foram de 21,7 cm e 23,0 m. respectivamente; a área basal média por hectare foi de 11,7098 nr. correspondendo a um volume médio de 117391 m3/ha; a espécie apresentou ótima desrama natural, boa adaptação ao Latossolo vermelho - amarelo, 69,44% de sobrevivência média, boa forma de fuste, não tendo sido verificadas doenças ou pragas.
Resumo:
Relatório de estágio de mestrado em Ensino de Matemática no 3.º Ciclo do Ensino Bsico e no Ensino Secundário
Resumo:
São apresentados os resultados da substituição do fubá de milho por farinha de pupunha, através do desempenho em crescimento e composição corporal de alevinos de tambaqui, alimentados durante 112dias com quatro dietas, constituídas de uma ração padrão e três níveis de substituição do fubá de milho. Osresultados demonstram que a farinha de pupunha pode substituir completamente o fubá de milho nas dietas para estes alevinos, sem afetar seu desempenho e composição corporal.
Resumo:
The influence of the large-scale climatic variability dominant modes in the Pacific and in the Atlantic on Amazonian rainfall is investigated. The composite technique of the Amazon precipitation anomalies is used in this work. The basis years for these composites arc those in the period 1960-1998 with occurrences of extremes in the Southern Oscillation (El Niño or La Niña) and the north/south warm (or cold) sea surface temperature (SST) anomalies dipole pattern in the tropical Atlantic. Warm (cold) dipole means positive (negative) anomalies in the tropical North Atlantic and negative (positive) anomalies in the tropical South Atlantic. Austral summer and autumn composites for extremes in the Southern Oscillation (El Niño or La Niña) and independently for north/south dipole pattern (warm or cold) of the SST anomalies in the tropical Atlantic present values (magnitude and sign) consistent with those found in previous works on the relationship between Amazon rainfall variations and the SST anomalies in the tropical Pacific and Atlantic. However, austral summer and autumn composites for the years with simultaneous occurrences of El Niño and warm north/south dipole of the SST anomalies in the tropical Atlantic show negative precipitation anomalies extending eastward over the center-eastern Amazon. This result indicates the important role played by the tropical Atlantic in the Amazon anomalous rainfall distribution.
Resumo:
Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.
Resumo:
This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, and failure modes for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.
Resumo:
Five full-scale timber floors were tested in order to analyse the in-plane behaviour of these structural systems. The main objective was an assessment of the effectiveness of in-plane strengthening using cross-laminated timber (CLT). To this end, one unstrengthened specimen (original), one specimen strengthened with a second layer of floorboards, two specimens strengthened with three CLT panels, and one specimen strengthened with two CLT panels, were tested. A numerical analysis was then performed in order to analyse the composite behaviour of the timber floors in more detail. Due to its importance as regards composite behaviour, the first phase of the experimental programme was composed of push-out tests on specimens representing the shear connection between the timber beams and the CLT panels. This paper describes the tests performed and the numerical modelling applied to evaluate the composite behaviour of the strengthened timber floors. The use of CLT panels is revealed to be an effective way to increase the in-plane stiffness of timber floors, through which the behaviour of the composite structure can be significantly changed, depending on the connection applied, or modified as required.
Resumo:
The authors appreciate the collaboration of the following labs: Civitest for developing DHCC materials, PIEP for conducting VARTM process (Eng. Luis Oliveira) and Department of Civil Engineering of Minho University to perform the tests (Mr. Antonio Matos and Eng. Marco Jorge).
Resumo:
The authors thank the federal agency CAPES and the Foundation for Research Support of the state of Sao Paulo, Brazil (FAPESP) for providing a PhD scholarship, and the University of Minho, in Portugal, for the international collaboration.
Resumo:
The effectiveness of prefabricated hybrid composite plates (HCPs) as a seismic retrofitting solution for damaged interior RC beam-column joints is experimentally studied. HCP is composed of a thin plate made of strain hardening cementitious composite (SHCC) reinforced with CFRP sheets/laminates. Two full-scale severely damaged interior beam-column joints are retrofitted using two different configurations of HCPs. The effectiveness of these retrofitting solutions mainly in terms of hysteretic response, dissipated energy, degradation of secant stiffness, displacement ductility and failure modes are compared to their virgin states. According to these criteria, both solutions resulted in superior responses regarding the ones registered in their virgin states.
Resumo:
This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, failure modes and slip information of the tensile steel bars for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
The bond behavior between Fiber Reinforced Polymers (FRPs) and masonry substrates has been the subject of many studies during the last years. Recent accelerated aging tests have shown that bond degradation and FRP delamination are likely to occur in FRP-strengthened masonry components under hygrothermal conditions. While an investigation on the possible methods to improve the durability of these systems is necessary, the applicability of different bond repair methods should also be studied. This paper aims at investigating the debonding mechanisms after repairing delaminated FRP-strengthened masonry components. FRP-strengthened brick specimens, after being delaminated, are repaired with two different adhesives: a conventional epoxy resin and a highly flexible polymer. The latter is used as an innovative adhesive in structural applications. The bond behavior in the repaired specimens is investigated by performing single-lap shear bond tests. Digital image correlation (DIC) is used for deeper investigation of the surface deformation and strains development. The effectiveness of the repair methods is discussed and compared with the strengthened specimens.
Resumo:
Nowadays, there is an increasing interest in using fiber reinforced polymers (FRP) for strengthening masonry elements. It has been observed that these materials, when used for externally bonded reinforcement (EBR), improve the performance of masonry components. However, issues such as durability and long-term performance of strengthened elements are still open. The bond between composite material and masonry substrate is a critical mechanism in EBR strengthening techniques, and therefore its durability and long-term performance should be deeply investigated and characterized. In the present study, the influence of water immersion on the bond performance is investigated by performing single-lap shear bond tests on two sets of GFRP-strengthened specimens immersed in water for six months. Different surface preparation techniques are used for each set of specimens to study their effect on the bond degradation. The specimens are prepared following the wet lay-up procedure. The observations and the obtained results are presented and discussed.
Resumo:
Innovative composite materials made of continuous fibers embedded in mortar matrices have been recently received attention for externally bonded reinforcement of masonry structures. In this regards, application of natural fibers for strengthening of the repair mortars is attractive due to their low specific weight, sustainability and recycability. This paper presents experimental characterization of tensile and pull-out behavior of natural fibers embedded in two different mortar-based matrices. A lime-based and a geopolymeric-based mortar are used as sustainable and innovative matrices. The obtained experimental results and observations are presented and discussed.