945 resultados para Atomic Units Normalization Orthogonalization
Resumo:
Analyses by atomic absorption spectrophotometry and spark-source mass spectrography of 25 basal metalliferous sediment units from widely spaced locations on the western flank of the East Pacific Rise show that the deposits are enriched relative to normal pelagic sediment in Fe, Mn, Ni, Cu, Pb, Zn, and many trace elements. The elements are partitioned differently between the various mineralogic constituents of the sediment, with Fe and Mn largely in separate phases and many of the remaining elements primarily associated with reducible ferromanganese oxide minerals but also with iron minerals and other phases. Most of the iron in the deposits is probably of volcanic origin, and much of the manganese and minor elements is derived from sea water. The bulk composition of the deposits varies with age; this is thought to be due to variations in the incidence of volcanic activity at the East Pacific Rise crest where the deposits were formed.
Resumo:
The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.
Resumo:
Basalt underlying early Campanian chalk at Deep Sea Drilling Project (DSDP) Site 163 is divided into seven extrusive cooling units bounded by glassy margins. The margins have dips of 15° to 70°, suggestive of pillow flows rather than tabular flows. The margins are fresh sideromelane (glass) grading inward to opaque and reddish-brown globules containing microcrystalline material with radial, undulose extinction. Relative to adjacent sideromelane, the reddish-brown globules are enriched in sodium and calcium, whereas the opaque globules are depleted in these elements and enriched in iron and magnesium. It appears that basalt just inside the pillow margins has differentiated in place into globules of two distinct compositions. This globule zone grades inward to less rapidly cooled pyroxene varioles and intergrowths of plagioclase and opaque minerals. In the center of the thicker cooling units, the texture is diabasic. Alteration and calcite vein abundance are greatest at pillow margins and decrease inward; the interior of the thickest cooling unit is only slightly altered, and calcite veins are absent. Chemical analysis of whole rock by atomic absorption spectrophotometry, and of sideromelane by electron microprobe, indicates that the rock is a slightly weathered tholeiite. The atomic absorption analyses, except the one nearest the top of the basalt, are relatively uniform and similar to the sideromelane microprobe analyses, including those near the top of the basalt. This suggests that deep penetration is not necessary to get through the severely altered layer at the basalt surface, and that within this altered layer, analyses of sideromelane may be more representative of crustal composition than analyses of whole rock.
Resumo:
A drilling transect across the sedimented eastern flank of the Juan de Fuca Ridge, conducted during Leg 168 of the Ocean Drilling Program, resulted in the recovery of samples of volcanic basement rocks (pillow basalts, massive basalts, and volcanic glass breccias) that exhibit the effects of low-temperature hydrothermal alteration. Secondary clays are ubiquitous, with Mg-rich and Fe-rich saponite and celadonitic clays commonly accounting for several percent, and up to 10%-20% by volume. Present-day temperatures of the basement sites vary from 15° to 64°C, with the coolest site being about 0.8 Ma, and the warmest site being about 3.5 Ma. Whereas clays are abundant at sites that have been heated to present temperatures of 23°C and higher, the youngest site at 15°C has only a small trace of secondary clay alteration. Alteration increases as temperatures increase and as the volcanic basement ages. The chemical compositions of secondary clays were determined by electron microprobe, and additional trace element data were determined by both conventional nebulization inductively coupled plasma-mass spectroscopy (ICP-MS) and laser-ablation ICP-MS. Trioctahedral saponite and pyrite are characteristic of the interior of altered rock pieces, forming under conditions of low-oxygen fugacity. Dioctahedral celadonite-like clays along with iron oxyhydroxide and Mg-saponite are characteristic of oxidized haloes surrounding the nonoxidized rock interiors. Chemical compositions of the clays are very similar to those determined from other deep-sea basalts altered at low temperature. The variable Mg:Fe of saponite appears to be a systematic function both of the Mg:Fe of the host rock and the oxidation state during water-rock interaction.
Resumo:
Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.
Resumo:
Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by a-recoil injection of 234Th. The fraction of 238U decays that result in a-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 0.0000004 to 0.000002 1/yr. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 1000 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (R_d) of soils and deep-sea sediments can be approximately described by the expression R_d ~ 0.1 1/age for ages spanning 1000 to 500,000,000 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.
Resumo:
The effects of water saturation and open pore space on the seismic velocities of crystalline rocks are extremely important when comparing laboratory data to in situ geophysical observations (e.g., Dortman and Magid, 1969; Nur and Simmons, 1969; Christensen and Salisbury, 1975). The existence of fractured rocks, flow breccias and drained pillows in oceanic crustal layer 2a, for instance, may appreciably reduce seismic velocities in that layer (Hyndman, 1976). Laboratory data assessing the influence of porosity and water saturation on seismic velocities of oceanic crustal rocks would certainly aid interpretation of marine geophysical data. Igneous rocks recovered during Leg 58 of the Deep Sea Drilling Project, in the Shikoku Basin and Daito Basin in the North Philippine Sea, are extremely vesicular, as evidenced by shipboard measurements of porosities, which range from 0 to 30 per cent (see reports on Sites 442, 443, 444, and 446, this volume). Samples with this range of porosities afford an excellent opportunity to examine the influence of porosity and water saturation on seismic velocities of oceanic basalts. This paper presents compressional-wave velocities to confining pressures of 1.5 kbars for water-saturated and air-dried basalt samples from the North Philippine Sea. Samples used in this study are from sites 442, 443 and 444 in the Shikoku Basin and Site 446 in the Daito Basin. Excellent negative correlation between porosity and compressional-wave velocity demonstrates that waterfilled pore space can significantly reduce compressionalwave velocities in porous basalts. Velocities measured in air-dried samples indicate that the velocity difference between dry samples and saturated samples is small for porosities exceeding 10 per cent, and very large for lower porosities.