958 resultados para Asterionellopsis glacialis
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
One articulated and several partial, semi-articulated specimens of acanthodians were collected in 1970 from the freshwater deposits of the Aztec Siltstone (Middle Devonian; Givetian), Portal Mountain, southern Victoria Land, Antarctica, during a Victoria University of Wellington Antarctic Expedition. The Portal Mountain fish fauna, preserved in a finely laminated, non-calcareous siltstone, includes acanthodians, palaeoniscoids, and bothriolepid placoderms. The articulated acanthodian specimens are the most complete fossil fish remains documented so far from the Aztec assemblage, which is the most diverse fossil vertebrate fauna known from Antarctica. They are described as a new taxon, Milesacanthus antarctica gen. et sp. nov., which is assigned to the family Diplacanthidae. Its fin spines show some similarities to spine fragments named Byssacanthoides debenhami from glacial moraine at Granite Harbour, Antarctica, and much larger spines named Antarctonchus glacialis from outcrops of the Aztec Siltstone in the Boomerang Range, southern Victoria Land. Both of these are reviewed, and retained as form taxa for isolated spines. Various isolated remains of fin spines and scales are described from Portal Mountain and Mount Crean (Lashly Range), and referred to Milesacanthus antarctica gen. et sp. nov. The histology of spines and scales is documented for the first time, and compared with acanthodian material from the Devonian of Australia and Europe. Distinctive fin spines from Mount Crean are provisionally assigned to Culmacanthus antarctica Young, 1989b. Several features on the most complete of the new fish specimens - in particular, the apparent lack of an enlarged cheek plate - suggest a revision of the diagnosis for the Diplacanthidae.
Resumo:
The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.
Resumo:
Meltponds on Arctic sea ice have previously been reported to be devoid of marine metazoans due to fresh-water conditions. The predominantly dark frequently also green and brownish meltponds observed in the Central Arctic in summer 2007 hinted to brackish conditions and considerable amounts of algae, possibly making the habitat suitable for marine metazoans. Environmental conditions in meltponds as well as sympagic meiofauna in new ice covering pond surfaces and in rotten ice on the bottom of ponds were studied, applying modified techniques from sea-ice and under-ice research. Due to the very porous structure of the rotten ice, the meltponds were usually brackish to saline, providing living conditions very similar to sub-ice water. The new ice cover on the surface had similar characteristics as the bottom layer of level ice. The ponds were thus accessible to and inhabitable by metazoans. The new ice cover and the rotten ice were inhabited by various sympagic meiofauna taxa, predominantly ciliates, rotifers, acoels, nematodes and foraminiferans. Also, sympagic amphipods were found on the bottom of meltponds. We suggest that, in consequence of global warming, brackish and saline meltponds are becoming more frequent in the Arctic, providing a new habitat to marine metazoans.
Resumo:
Influence of methanogenic populations in Holocene lacustrine sediments revealed by clone libraries and fatty acid biogeochemistry.Biological characteristics of ice-associated algal communities were studied in Darnley Bay (western Canadian Arctic) during a 2-week period in July 2008 when the landfast ice cover had reached an advanced stage of melt. We found two distinct and separate algal communities: (1) an interior ice community confined to brine channel networks beneath white ice covers; and (2) an ice melt water community in the brackish waters of both surface melt ponds and the layer immediately below the ice cover. Both communities reached maximum chlorophyll a concentrations of about 2.5 mg/m**3, but with diatoms dominating the interior ice while flagellates dominated the melt water community. The microflora of each community was diverse, containing both unique and shared algal species, the latter suggesting an initial seeding of the ice melt water by the bottom ice community. Absorption characteristics of the algae indicated the presence of mycosporine-like amino acids (MAAs) and carotenoid pigments as a photoprotective strategy against being confined to high-light near-surface layers. Although likely not contributing substantially to total annual primary production, these ice-associated communities may play an important ecological role in the Arctic marine ecosystem, supplying an accessible and stable food source to higher trophic levels during the period of ice melt.
Resumo:
The marine ecosystem on the eastern shelf of the Antarctic Peninsula was surveyed 5 and 12 years after the climate-induced collapse of the Larsen A and B ice shelves. An impoverished benthic fauna was discovered, that included deep-sea species presumed to be remnants from ice-covered conditions. The current structure of various ecosystem components appears to result from extremely different response rates to the change from an oligotrophic sub-ice-shelf ecosystem to a productive shelf ecosystem. Meiobenthic communities remained impoverished only inside the embayments. On local scales, macro- and mega-epibenthic diversity was generally low, with pioneer species and typical Antarctic megabenthic shelf species interspersed. Antarctic Minke whales and seals utilised the Larsen A/B area to feed on presumably newly established krill and pelagic fish biomass. Ecosystem impacts also extended well beyond the zone of ice-shelf collapse, with areas of high benthic disturbance resulting from scour by icebergs discharged from the Larsen embayments.
Resumo:
This study of Antarctic sympagic meiofauna in pack ice during late winter compares communities between the perennially ice-covered western Weddell Sea and the seasonally ice-covered southern Indian Ocean. Sympagic meiofauna (proto- and metazoans > 20 µm) and eggs > 20 µm were studied in terms of diversity, abundance and carbon biomass, and with respect to vertical distribution. Metazoan meiofauna had significantly higher abundance and biomass in the western Weddell Sea (medians: 31.1 * 10**3/m**2 and 6.53 mg/m**2, respectively) than in the southern Indian Ocean (medians: 1.0 * 10**3 /m**2 and 0.06 mg/m**2, respectively). Metazoan diversity was also significantly higher in the western Weddell Sea. Furthermore, the two regions differed significantly in terms of meiofauna community composition, as revealed through multivariate analyses. The overall diversity of sympagic meiofauna was high, and integrated abundance and biomass of total meiofauna were also high in both regions (0.6 - 178.6 * 10**3/m**2 and 0.02 - 89.70 mg/m**2, respectively), mostly exceeding values reported earlier from the western Weddell Sea in winter. We attribute the differences in meiofauna communities between the two regions to the older first-year ice and multi-year ice that is present in the western Weddell Sea, but not in the southern Indian Ocean. Our study indicates the significance of perennially ice-covered regions for the establishment of diverse and abundant meiofauna communities. Furthermore, it highlights the potential importance of sympagic meiofauna for the organic matter pool and trophic interactions in sea ice.
Resumo:
In order to map the modern distribution of diatoms and to establish a reliable reference data set for paleoenvironmental reconstruction in the northern North Pacific, a new data set including the relative abundance of diatom species preserved in a total of 422 surface sediments was generated, which covers a broad range of environmental variables characteristic of the subarctic North Pacific, the Sea of Okhotsk and the Bering Sea between 30° and 70°N. The biogeographic distribution patterns as well as the preferences in sea surface temperature of 38 diatom species and species groups are documented. A Q-mode factor analysis yields a three-factor model representing assemblages associated with the Arctic, Subarctic and Subtropical water mass, indicating a close relationship between the diatom composition and the sea surface temperatures. The relative abundance pattern of 38 diatom species and species groups was statistically compared with nine environmental variables, i.e. the summer sea surface temperature and salinity, annual surface nutrient concentration (nitrate, phosphate, silicate), summer and winter mixed layer depth and summer and winter sea ice concentrations. Canonical Correspondence Analysis (CCA) indicates 32 species and species groups have strong correspondence with the pattern of summer sea surface temperature. In addition, the total diatom flux data compiled from ten sediment traps reveal that the seasonal signals preserved in the surface sediments are mostly from spring through autumn. This close relationship between diatom composition and the summer sea surface temperature will be useful in deriving a transfer function in the subarctic North Pacific for the quantitative paleoceanographic and paleoenvironmental studies. The relative abundance of the sea-ice indicator diatoms Fragilariopsis cylindrus and F. oceanica of >20% in the diatom composition is used to represent the winter sea ice edge in the Bering Sea. The northern boundary of the distribution of F. doliolus in the open ocean is suggested to be an indicator of the Subarctic Front, while the abundance of Chaetoceros resting spores may indicate iron input from nearby continents and shelves and induced productivity events in the study area.
Resumo:
Over the past 13 kyr the most significant natural changes in the Reykjanes ridge region took place within 13-7.8 kyr B.P. They resulted from alternating intensifications of the influence of the Labrador (LWM) and Norwegian-Greenland (NGWM) water masses. During 13-11.7 kyr B.P. natural conditions were governed by influence of LWM with sea surface temperature (SST) 3-5°C lower present one. During 11.7-10.3 kyr B.P. NGWM with SST 6-7°C lower present one predominated. During 10.3-9.5 kyr B.P. oceanographic conditions were rapidly transforming and approaching present ones controlled by interaction between LWM and North Atlantic water masses; SST abruptly increased almost to the present value. During 9.5-8.3 kyr B.P. intensification of NGWM led to small decrease of SST (1.5-2.5°C below present value; between 8.3 and 7.8 kyr B.P. natural conditions had approximated present ones and later on remained relatively stable; SST fluctuated with an amplitude of about 1.5°C.
Resumo:
The surface and sub-ice layer habitats and their metazoan fauna were studied on a drifting pack-ice floe in the western Weddell Sea from 29 November 2004 to 1 January 2005 during the "Ice Station POLarstern" (ISPOL). Flooding of the floe occurred at some places, and the establishment of surface layers with a brownish colour due to growing algae was observed at several sampling sites. The average surface-layer temperature, brine salinity and brine volume were -1.4 °C, 25.3 and 54%, respectively. The temperature-salinity relationship in the surface layer was seldom at equilibrium conditions. Chlorophyll a (Chl a) concentrations in the brine varied between 1.0 and 53.5 µg /L. Surface-layer thickness, salinity, Chl a concentration and copepod abundances were generally higher at the edge of the floe than in the inner part. The sympagic copepod species Drescheriella glacialis/racovitzai and Stephos longipes, with abundances ranging between 0 and 3830 ind/L (median: 2 ind/L) and 0 and 1293 ind/L (median: 4 ind/L), respectively, were the dominant members of the surface-layer meiofauna. Their populations consisted mainly of adults and early naupliar stages, which points to an active reproduction of these species within the surface layer. Other taxa found in the surface layer were undetermined turbellarians, the gastropod Tergipes antarcticus, and, for the first time, the ctenophore Callianira antarctica, and the amphipods Eusirus antarcticus and Eusirus tridentatus. During the course of our study, slight melting at the ice underside took place, releasing sympagic organisms to the water column. Chl a concentrations in the sub-ice water layer were very low (0.1-0.5 µg /L), except for 25 December when the Chl a concentration at 0 m depth increased to 2.3 µg /L. The most dominant sympagic copepod species found in the sub-ice layer was Ectinosoma sp., with abundances ranging between 1 and 599 ind/m**3 (median: 25 ind/m**3). Other sympagic copepod species occurring regularly in this habitat were D. glacialis/racovitzai, Diarthrodes cf. lilacinus, Idomene antarctica and S. longipes. All of these sympagic species were generally found in higher abundances at 0 m depth underneath the ice than at 5 m depth, in contrast to pelagic copepod species that occurred more frequently at 5 m depth. Niche separation and probable life-cycle strategies of dominant sympagic metazoans are discussed.