936 resultados para Antiferromagnetic resonance
Resumo:
To evaluate variations of some anatomic structures of sellar and parasellar regions and their possible differences between genders and age groups. Magnetic resonance images (MRI) of 380 patients were performed to analyze the dimensions of the sphenoid sinus, pituitary gland, optic chiasm, intra-cavernous carotid distances, distance between columella nasal - sphenoid sinus; and columella nasal-pituitary gland. The patients age ranged between 20 and 80 years (mean age 48 years). The study included 235 females (mean age 53 years) and 145 males (mean age 40 years). The transverse length of the pituitary, the inter-carotid distance and the height of the pituitary were similar between genders and age groups. The width and height of the optic chiasm showed differences only between females of different ages. Males presented greater distances between nasal columella and sphenoid sinus. The most common type of pneumatization of the sphenoid sinus was the sellar, and depending on the age group, sphenoid sinus was larger in males than females. The anatomy of the Sellar and parasellar regions is complex and varies widely within the normal range. They are a small area, rich in anatomical details affecting multiple physiological systems in the body and, therefore, have great importance in several medical fields. A better understanding of these complex structures is essential in clinical diagnosis and treatment of disease.
Resumo:
Short implants are increasingly used, but there is doubt about their performance being similar to that of regular implants. The aim of this study was to compare the mechanical stability of short implants vs. regular implants placed in the edentulous posterior mandible. Twenty-three patients received a total of 48 short implants (5 × 5.5 mm and 5 × 7 mm) and 42 regular implants (4 × 10 mm and 4 × 11.5 mm) in the posterior mandible. Patients who received short implants had <10 mm of bone height measured from the bone crest to the outer wall of the mandibular canal. Resonance frequency analysis (RFA) was performed at time intervals T0 (immediately after implant placement), T1 (after 15 days), T2 (after 30 days), T3 (after 60 days), and T4 (after 90 days). The survival rate after 90 days was 87.5% for the short implants and 100% for regular implants (P < 0.05). There was no significant difference between the implants in time intervals T1, T2, T3, and T4. In T0, the RFA values of 5 × 5.5 implants were higher than values of 5 × 7 and 4 × 11.5 implants (P < 0.05). A total of six short implants that were placed in four patients were lost (three of 5 × 5.5 mm and three of 5 × 7 mm). Three lost implants started with high ISQ values, which progressively decreased. The other three lost implants started with a slightly lower ISQ value, which rose and then began to fall. Survival rate of short implants after 90 days was lower than that of regular implants. However, short implants may be considered a reasonable alternative for rehabilitation of severely resorbed mandibles with reduced height, to avoid performing bone reconstruction before implant placement. Patients need to be aware of the reduced survival rate compared with regular implants before implant placement to avoid disappointments.
Resumo:
Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.
Resumo:
High intake of saturated fat from meats has been associated with cardiovascular disease, cancer, diabetes, and others diseases. In this paper, we are introducing a simple, high-throughput, and non-destructive low-resolution nuclear magnetic resonance method that has the potential to analyze the intramuscular fat content (IMF) in more than 1,000 beef portions per hour. The results can be used in nutritional fact labels, replacing the currently used average value. The method is based on longitudinal (T(1)) and transverse (T(2)) relaxation time information obtained by a continuous wave-free precession (CWFP) sequence. CWFP yields a higher correlation coefficient (r=0.9) than the conventional Carr-Purcell-Meiboom- Gill (CPMG) method (r=-0.25) for IMF in beef and is just as fast and a simpler pulse sequence than CPMG. The method can also be applied to other meat products.
Resumo:
The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been used in many applications of magnetic resonance imaging (MRI) and low-resolution NMR (LRNMR) spectroscopy. Recently. CPMG was used in online LRNMR measurements that use long RF pulse trains, causing an increase in probe temperature and, therefore, tuning and matching maladjustments. To minimize this problem, the use of a low-power CPMG sequence based on low refocusing pulse flip angles (LRFA) was studied experimentally and theoretically. This approach has been used in several MRI protocols to reduce incident RF power and meet the specific absorption rate. The results for CPMG with LRFA of 3 pi/4 (CPMG(135)), pi/2 (CPMG(90)) and pi/4 (CPMG(45)) were compared with conventional CPMG with refocusing pi pulses. For a homogeneous field, with linewidth equal to Delta nu = 15 Hz, the refocusing flip angles can be as low as pi/4 to obtain the transverse relaxation time (T(2)) value with errors below 5%. For a less homogeneous magnetic field. Delta nu = 100 Hz, the choice of the LRFA has to take into account the reduction in the intensity of the CPMG signal and the increase in the time constant of the CPMG decay that also becomes dependent on longitudinal relaxation time (T(1)). We have compared the T(2) values measured by conventional CPMG and CPMG(90) for 30 oilseed species, and a good correlation coefficient, r = 0.98, was obtained. Therefore, for oilseeds, the T(2) measurements performed with pi/2 refocusing pulses (CPMG(90)), with the same pulse width of conventional CPMG, use only 25% of the RF power. This reduces the heating problem in the probe and reduces the power deposition in the samples. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nuclear magnetic resonance (NMR) was successfully employed to test several protocols and ideas in quantum information science. In most of these implementations, the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this paper, we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogue of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrates how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present.