977 resultados para Amplitude equation
Resumo:
In this paper a relation between the Camassa-Holm equation and the non-local deformations of the sinh-Gordon equation is used to study some properties of the former equation. We will show that cuspon and soliton solutions can be obtained from soliton solutions of the deformed sinh-Gordon equation.
Resumo:
We present a numerical scheme for solving the time-independent nonlinear Gross-Pitaevskii equation in two dimensions describing the Bose-Einstein condensate of trapped interacting neutral atoms at zero temperature. The trap potential is taken to be of the harmonic-oscillator type and the interaction both attractive and repulsive. The Gross-Pitaevskii equation is numerically integrated consistent with the correct boundary conditions at the origin and in the asymptotic region. Rapid convergence is obtained in all cases studied. In the attractive case there is a limit Co the maximum number of atoms in the condensate. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the 'negative' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector nonlinear Schrodinger equations appear as lowest-negative and second-positive flows within the extended hierarchy. This is fully analogous to the well known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the 'negative' sector of the sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.
Resumo:
In this Letter we investigate Lie symmetries of a (2 + 1)-dimensional integrable generalization of the Camassa-Holm (CH) equation. Through the similarity reductions we obtain four different (1 + 1)-dimensional systems of partial differential equations in which one of them turns out to be a (1 + 1)-dimensional CH equation. We establish their integrability by providing the Lax pair for all of them. Further, we present a brief analysis for some types of particular solutions which include the cuspon, peakon and soliton solutions for the two-dimensional generalization of the CH equation. (C) 2000 Published by Elsevier B.V. B.V.
Resumo:
The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments.
Resumo:
The introduction of defects is discussed under the Lagrangian formalism and Backlund transformations for the N = 1 super sinh-Gordon model. Modified conserved momentum and energy are constructed for this case. Some explicit examples of different Backlund soliton solutions are discussed. The Lax formulation within the space split by the defect leads to the integrability of the model and henceforth to the existence of an infinite number of constants of motion.
Resumo:
An open superstring field theory action has been proposed which does not suffer from contact term divergences. In this paper, we compute the on-shell four-point tree amplitude fi om this action using the Giddings map. After including contributions from the quartic term in the action, the resulting amplitude agrees with the first-quantized prescription. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We demonstrate the formation of bright solitons in coupled self-defocusing nonlinear Schrodinger (NLS) equation supported by attractive coupling. As an application we use a time-dependent dynamical mean-field model to study the formation of stable bright solitons in two-component repulsive Bose-Einstein condensates (BECs) supported by interspecies attraction in a quasi one-dimensional geometry. When all interactions are repulsive, there cannot be bright solitons. However, bright solitons can be formed in two-component repulsive BECs for a sufficiently attractive interspecies interaction, which induces an attractive effective interaction among bosons of same type. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We study the problem of the evolution of the free surface of a fluid in a saturated porous medium, bounded from below by a. at impermeable bottom, and described by the Laplace equation with moving-boundary conditions. By making use of a convenient conformal transformation, we show that the solution to this problem is equivalent to the solution of the Laplace equation on a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we are able to find an exact differential-integral equation for the evolution of the free surface in one space dimension. Although not amenable to direct analytical solutions, this equation turns out to allow an easy numerical implementation. We give an explicit illustrative case at the end of the article.
Resumo:
The interaction of different kinds of solitary waves of the Camassa-Holm equation is investigated. We consider soliton-soliton, soliton-cuspon and cuspon-cuspon interactions. The description of these solutions had previously been shown to be reducible to the solution of an algebraic equation. Here we give explicit examples, numerically solving these algebraic equations and plotting the corresponding solutions. Further, we show that the interaction is elastic and leads to a shift in the position of the solitons or cuspons. We give the analytical expressions for this shift and represent graphically the coupled soliton-cuspon, soliton-soliton and cuspon-cuspon interactions.
Resumo:
We shall consider a coupled nonlinear Schrodinger equation- Bloch system of equations describing the propagation of a single pulse through a nonlinear dispersive waveguide in the presence of resonances; this could be, for example, a doped optical fibre. By making use of the integrability of the dynamic equations, we shall apply the finite-gap integration method to obtain periodic solutions for this system. Next, we consider the problem of the formation of solitons at a sharp front pulse and, by means of the Whitham modulational theory, we derive the amplitude and velocity of the largest soliton.
Resumo:
Critical limits of a stationary nonlinear three-dimensional Schrodinger equation with confining power-law potentials (similar to r(alpha)) are obtained using spherical symmetry. When the nonlinearity is given by an attractive two-body interaction (negative cubic term), it is shown how the maximum number of particles N-c in the trap increases as alpha decreases. With a negative cubic and positive quintic terms we study a first order phase transition, that occurs if the strength g(3) of the quintic term is less than a critical value g(3c). At the phase transition, the behavior of g(3c) with respect to alpha is given by g(3c)similar to 0.0036+0.0251/alpha+0.0088/alpha(2).
Resumo:
Considering the static solutions of the D-dimensional nonlinear Schrodinger equation with trap and attractive two-body interactions, the existence of stable solutions is limited to a maximum critical number of particles, when D greater than or equal to 2. In case D = 2, we compare the variational approach with the exact numerical calculations. We show that, the addition of a positive three-body interaction allows stable solutions beyond the critical number. In this case, we also introduce a dynamical analysis of the conditions for the collapse. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.