955 resultados para Amorphous silicon thin film
Resumo:
A novel method of preparation of the Si nanoparticles (NPs) incorporated in tellurite TeO2-WO3-Bi2O3 (TWB) thin films is proposed. This mew method applies RF magnetron sputtering technique at room temperature. The incorporation of Si NP was confirmed by transmission electron microscopy (TEM); isolated Si NPs with diameters of around 6 nm are observed. Energy dispersive X-ray spectroscopy (EDS) was performed during TEM analysis in order to confirm the presence of Si NP and also the other elements of the thin film. The thin films are explored with respect to the photoinduced changes of the reflectivity within the 400-65 nm spectra range using a 10 ns pulsed Nd:YAG with power densities varying up to 400 MW/cm2 and beam diameter within the 3-5 mm range. The observed processes are analyzed within a framework of trapping level conceptions for the Si NP. The possible application of the discovered materials as optical sensitive sensors is proposed. © 2013 Elsevier B.V.
Resumo:
Photovoltaic (PV) conversion is the direct production of electrical energy from sun without involving the emission of polluting substances. In order to be competitive with other energy sources, cost of the PV technology must be reduced ensuring adequate conversion efficiencies. These goals have motivated the interest of researchers in investigating advanced designs of crystalline silicon solar (c-Si) cells. Since lowering the cost of PV devices involves the reduction of the volume of semiconductor, an effective light trapping strategy aimed at increasing the photon absorption is required. Modeling of solar cells by electro-optical numerical simulation is helpful to predict the performance of future generations devices exhibiting advanced light-trapping schemes and to provide new and more specific guidelines to industry. The approaches to optical simulation commonly adopted for c-Si solar cells may lead to inaccurate results in case of thin film and nano-stuctured solar cells. On the other hand, rigorous solvers of Maxwell equations are really cpu- and memory-intensive. Recently, in optical simulation of solar cells, the RCWA method has gained relevance, providing a good trade-off between accuracy and computational resources requirement. This thesis is a contribution to the numerical simulation of advanced silicon solar cells by means of a state-of-the-art numerical 2-D/3-D device simulator, that has been successfully applied to the simulation of selective emitter and the rear point contact solar cells, for which the multi-dimensionality of the transport model is required in order to properly account for all physical competing mechanisms. In the second part of the thesis, the optical problems is discussed. Two novel and computationally efficient RCWA implementations for 2-D simulation domains as well as a third RCWA for 3-D structures based on an eigenvalues calculation approach have been presented. The proposed simulators have been validated in terms of accuracy, numerical convergence, computation time and correctness of results.
Resumo:
Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.
Resumo:
In recent decades, Organic Thin Film Transistors (OTFTs) have attracted lots of interest due to their low cost, large area and flexible properties which have brought them to be considered the building blocks of the future organic electronics. Experimentally, devices based on the same organic material deposited in different ways, i.e. by varying the deposition rate of the molecules, show different electrical performance. As predicted theoretically, this is due to the speed and rate by which charge carriers can be transported by hopping in organic thin films, transport that depends on the molecular arrangement of the molecules. This strongly suggests a correlation between the morphology of the organic semiconductor and the performance of the OTFT and hence motivated us to carry out an in-situ real time SPM study of organic semiconductor growth as an almost unprecedent experiment with the aim to fully describe the morphological evolution of the ultra-thin film and find the relevant morphological parameters affecting the OTFT electrical response. For the case of 6T on silicon oxide, we have shown that the growth mechanism is 2D+3D, with a roughening transition at the third layer and a rapid roughening. Relevant morphological parameters have been extracted by the AFM images. We also developed an original mathematical model to estimate theoretically and more accurately than before, the capacitance of an EFM tip in front of a metallic substrate. Finally, we obtained Ultra High Vacuum (UHV) AFM images of 6T at lying molecules layer both on silicon oxide and on top of 6T islands. Moreover, we performed ex-situ AFM imaging on a bilayer film composed of pentacene (a p-type semiconductor) and C60 (an n-type semiconductor).
Resumo:
Renewable energy is growing in demand, and thus the the manufacture of solar cells and photovoltaic arrays has advanced dramatically in recent years. This is proved by the fact that the photovoltaic production has doubled every 2 years, increasing by an average of 48% each year since 2002. Covering the general overview of solar cell working, and its model, this thesis will start with the three generations of photovoltaic solar cell technology, and move to the motivation of dedicating research to nanostructured solar cell. For the current generation solar cells, among several factors, like photon capture, photon reflection, carrier generation by photons, carrier transport and collection, the efficiency also depends on the absorption of photons. The absorption coefficient,α, and its dependence on the wavelength, λ, is of major concern to improve the efficiency. Nano-silicon structures (quantum wells and quantum dots) have a unique advantage compared to bulk and thin film crystalline silicon that multiple direct and indirect band gaps can be realized by appropriate size control of the quantum wells. This enables multiple wavelength photons of the solar spectrum to be absorbed efficiently. There is limited research on the calculation of absorption coefficient in nano structures of silicon. We present a theoretical approach to calculate the absorption coefficient using quantum mechanical calculations on the interaction of photons with the electrons of the valence band. One model is that the oscillator strength of the direct optical transitions is enhanced by the quantumconfinement effect in Si nanocrystallites. These kinds of quantum wells can be realized in practice in porous silicon. The absorption coefficient shows a peak of 64638.2 cm-1 at = 343 nm at photon energy of ξ = 3.49 eV ( = 355.532 nm). I have shown that a large value of absorption coefficient α comparable to that of bulk silicon is possible in silicon QDs because of carrier confinement. Our results have shown that we can enhance the absorption coefficient by an order of 10, and at the same time a nearly constant absorption coefficient curve over the visible spectrum. The validity of plots is verified by the correlation with experimental photoluminescence plots. A very generic comparison for the efficiency of p-i-n junction solar cell is given for a cell incorporating QDs and sans QDs. The design and fabrication technique is discussed in brief. I have shown that by using QDs in the intrinsic region of a cell, we can improve the efficiency by a factor of 1.865 times. Thus for a solar cell of efficiency of 26% for first generation solar cell, we can improve the efficiency to nearly 48.5% on using QDs.
Resumo:
One of the key steps to achieve high efficiencies in amorphous/crystalline silicon photovoltaic structures is to design low-ohmic-resistance backcontacts with good passivation in the rear part of the cell. A well known approach to achieve this goal is to use laser-fired contact (LFC) processes in which a metal layer is fired through the dielectric to define good contacts with the semiconductor. However, and despite the fact that this approach has demonstrated to be extremely successful, there is still enough room for process improvement with an appropriate optimization. In this paper, a study focused on the optimal adjustment of the irradiation parameters to produce laser-fired contacts in a-Si:H/c-Si heterojunctionsolarcells is presented. We used samples consisting of crystalline-silicon (c-Si) wafers together with a passivation layer of intrinsic hydrogenated amorphous silicon (a-Si:H(i)) deposited by plasma-enhanced chemical deposition (PECVD). Then, an aluminum layer was evaporated on both sides, the thickness of this layer varied from 0.2 to 1 μm in order to identify the optimal amount of Al required to create an appropriate contact. A q-switched Nd:YVO4laser source, λ = 532 nm, was used to locally fire the aluminum through the thin a-Si:H(i)-layers to form the LFC. The effects of laser fluences were analyzed using a comprehensive morphological and electrical characterization.
Resumo:
Laser material processing is being extensively used in photovoltaic applications for both the fabrication of thin film modules and the enhancement of the crystalline silicon solar cells. The two temperature model for thermal diffusion was numerically solved in this paper. Laser pulses of 1064, 532 or 248 nm with duration of 35, 26 or 10 ns were considered as the thermal source leading to the material ablation. Considering high irradiance levels (108–109 W cm−2), a total absorption of the energy during the ablation process was assumed in the model. The materials analysed in the simulation were aluminium (Al) and silver (Ag), which are commonly used as metallic electrodes in photovoltaic devices. Moreover, thermal diffusion was also simulated for crystalline silicon (c-Si). A similar trend of temperature as a function of depth and time was found for both metals and c-Si regardless of the employed wavelength. For each material, the ablation depth dependence on laser pulse parameters was determined by means of an ablation criterion. Thus, after the laser pulse, the maximum depth for which the total energy stored in the material is equal to the vaporisation enthalpy was considered as the ablation depth. For all cases, the ablation depth increased with the laser pulse fluence and did not exhibit a clear correlation with the radiation wavelength. Finally, the experimental validation of the simulation results was carried out and the ability of the model with the initial hypothesis of total energy absorption to closely fit experimental results was confirmed.
Resumo:
Resumen En la última década la tecnología láser se ha convertido en una herramienta imprescindible en la fabricación de dispositivos fotovoltaicos, muy especial¬mente en aquellos basados en tecnología de lámina delgada. Independiente¬mente de crisis coyunturales en el sector, la evolución en los próximos años de estas tecnologías seguirá aprovechándose de la flexibilidad y calidad de proceso de la herramienta láser para la consecución de los dos objetivos básicos que harán de la fotovoltaica una opción energética económicamente viable: la reducción de costes de fabricación y el aumento de eficiencia de los dispositivos. Dentro de las tecnologías fotovoltaicas de lámina delgada, la tecnología de dispositivos basados en silicio amorfo ha tenido un gran desarrollo en sistemas estándar en configuración de superestrato, pero su limitada efi¬ciencia hace que su supervivencia futura pase por el desarrollo de formatos en configuración de substrato sobre materiales flexibles de bajo coste. En esta aproximación, las soluciones industriales basadas en láser actualmente disponibles para la interconexión monolítica de dispositivos no son aplica¬bles, y desde hace años se viene investigando en la búsqueda de soluciones apropiadas para el desarrollo de dichos procesos de interconexión de forma que sean transferibles a la industria. En este contexto, esta Tesis propone una aproximación completamente orig¬inal, demostrando la posibilidad de ejecutar una interconexión completa de estos dispositivos irradiando por el lado de la lámina (es decir de forma com¬patible con la opción de configuración de substrato y, valga la redundancia, con el substrato del dispositivo opaco), y con fuentes láser emitiendo en UV. Este resultado, obtenido por primera vez a nivel internacional con este trabajo, aporta un conocimiento revelador del verdadero potencial de estas fuentes en el desarrollo industrial futuro de estas tecnologías. Si bien muy posiblemente la solución industrial final requiera de una solución mixta con el empleo de fuentes en UV y, posiblemente, en otras longitudes de onda, esta Tesis y su planteamiento novedoso aportan un conocimiento de gran valor a la comunidad internacional por la originalidad del planteamiento seguido, los resultados parciales encontrados en su desarrollo (un número importante de los cuales han aparecido en revistas del JCR que recogen en la actualidad un número muy significativo de citas) y porque saca además a la luz, con las consideraciones físicas pertinentes, las limitaciones intrínsecas que el desarrollo de procesos de ablación directa selectiva con láseres UV en parte de los materiales utilizados presenta en el rango temporal de in¬teracción de ns y ps. En este trabajo se han desarrollado y optimizado los tres pasos estándar de interconexión (los habitualmente denominados Pl, P2 y P3 en la industria fotovoltaica) demostrando las ventajas y limitaciones del uso de fuentes en UV tanto con ancho temporal de ns como de ps. En particular destaca, por el éxito en los resultados obtenidos, el estudio de procesos de ablación selectiva de óxidos conductores transparentes (en este trabajo utilizados tanto como contacto frontal así como posterior en los módulos) que ha generado resultados, de excelente acogida científica a nivel internacional, cuya aplicación trasciende el ámbito de las tecnologías de silicio amorfo en lámina delgada. Además en este trabajo de Tesis, en el desarrollo del objetivo citado, se han puesto a punto técnicas de análisis de los procesos láser, basadas en métodos avanzados de caracterización de materiales (como el uso combi¬nado de la espectroscopia dispersiva de rayos X y la microscopía confocal de barrido) que se presentan como auténticos avances en el desarrollo de técnicas específicas de caracterización para el estudio de los procesos con láser de ablación selectiva de materiales en lámina delgada, procesos que no solo tienen impacto en el ámbito de la fotovoltaica, sino también en la microelectrónica, la biotecnología, la microfabricación, etc. Como resultado adicional, parte de los resultados de este trabajo, han sido aplicados exi¬tosamente por el grupo de investigaci´on en la que la autora desarrolla su labor para conseguir desarrollar procesos de enorme inter´es en otras tec-nolog´ıas fotovoltaicas, como las tecnolog´ıas est´andar de silicio amorfo sobre vidrio en configuraci´on de superestrato o el procesado de capas delgadas en tecnolog´ıas convencionales de silicio cristalino. Por u´ltimo decir que este trabajo ha sido posible por una colaboraci´on muy estrecha entre el Centro L´aser de la UPM, en el que la autora de¬sarrolla su labor, y el Grupo de Silicio Depositado del Centro de Inves¬tigaciones Energ´eticas, Medioambientales y Tecnol´ogicas, CIEMAT, que, junto al Grupo de Energ´ıa Fotovoltaica de la Universidad de Barcelona, han preparado la mayor parte de las muestras utilizadas en este estudio. Dichas colaboraciones se han desarrollado en el marco de varios proyectos de investigaci´on aplicada con subvenci´on pu´blica, tales como el proyecto singular estrat´egico PSE-MICROSIL08 (PSE-120000-2006-6), el proyecto INNDISOL (IPT-420000-2010-6), ambos financiados porel Fondo Europeo de Desarrollo Regional FEDER (UE) ”Una manera de hacer Europa y el MICINN, y los proyectos de Plan Nacional AMIC (ENE2010-21384-C04-´ 02) y CLASICO (ENE2007-6772-C04-04), cuya financiaci´on ha permitido en gran parte llevar a t´ermino este trabajo Abstract In the last decade, the laser technology has turned into an indispensable tool in the production of photovoltaic devices, especially of those based on thin film technology. Regardless the current crisis in the sector, the evolution of these technologies in the upcoming years will keep taking advantage of the flexibility and process quality of the laser tool for the accomplishment of the two basic goals that will convert the photovoltaic energy into economically viable: the manufacture cost reduction and the increase in the efficiency of the devices. Amongst the thin film laser technologies, the technology of devices based on amorphous silicon has had a great development in standard systems of superstrate configuration, but its limited efficiency makes its survival de¬pendant on the development of formats in substrate configuration with low cost flexible materials. In this approach, the laser industrial solutions cur¬rently available for the monolithic interconnection are not applicable, and in the last few years the investigations have been focused on the search of appropriate solutions for the development of such interconnection processes in a way that the same are transferable to the industry. In this context, this Thesis proposes a totally original approach, proving the possibility of executing a full interconnection of these devices by means of irradiation from the film side, i.e., compatible with the substrate con¬figuration, and with UV laser sources. This result, obtained for the first time at international level in this work, provides a revealing knowledge of the true potential of these sources in the future industrial development of these technologies. Even though very probably the final industrial solution will require a combination of the use of UV sources along with other wave¬lengths, this Thesis and its novel approach contribute with a high value to the international community because of the originality of the approach, the partial results found throughout its development (out of which, a large number has appeared in JCR journals that currently accumulate a signifi¬cant number of citations) and brings to light, with the pertinent scientific considerations, the intrinsic limitations that the selective direct ablation processes with UV laser present in the temporal range of interaction of ns and ps for part of the materials used in this study. More particularly, the three standard steps of interconnection (usually de¬nominated P1, P2 and P3 in the photovoltaic industry) have been developed and optimized, showing the advantages as well as the limitations of the use of UV sources in both the ns and ps pulse-width ranges. It is highly remark¬able, because of the success in the obtained results, the study of selective ablation processes in transparent conductive oxide (in this work used as a front and back contact), that has generated results, of excellent interna¬tional scientific reception, whose applications go beyond the scope of thin film photovoltaic technologies based on amorphous silicon. Moreover, in this Thesis, with the development of the mentioned goal, differ¬ent techniques of analysis of laser processes have been fine-tuned, basing the same in advanced methods for material characterization (like the combined use of EDX Analysis and Confocal Laser Scanning Microscopy) that can be presented as true breakthroughs in the development of specific techniques for characterization in the study of laser processes of selective ablation of materials in thin film technologies, processes that not only have impact in the photovoltaic field, but also in those of microelectronics, biotechnology, micro-fabrication, etc. As an additional outcome, part of the results of this work has been suc¬cessfully applied, by the investigation group to which the author belongs, to the development of processes of enormous interest within other photo¬voltaic technologies, such as the standard technologies on amorphous silicon over glass in superstrate configuration or the processing of thin layers in conventional technologies using crystalline silicon. Lastly, it is important to mention that this work has been possible thanks to the close cooperation between the Centro L´aser of the UPM, in which the author develops her work, and the Grupo de Silicio Depositado of Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol´ogicas, CIEMAT, which, along with the Grupo de Energ´ıa Fotovoltaica of Univer¬sidad de Barcelona, has prepared the largest part of the samples utilized in this study. Such collaborations have been carried out in the context of several projects of applied investigation with public funding, like Proyecto Singular Estrat´egico PSE-MICROSIL08 (PSE-120000-2006-6), Proyecto IN-NDISOL (IPT-420000-2010-6), both funded by the European Regional De¬velopment Fund (ERDF), ”Una manera de hacer Europa” and MICINN, and the projects of Plan Nacional AMIC (ENE2010-21384-C04-02) and ´ CLASICO (ENE2007-6772-C04-04), whose funds have enabled the devel-opment of large part of this work.
Resumo:
It is well known that lasers have helped to increase efficiency and to reduce production costs in the photovoltaic (PV) sector in the last two decades, appearing in most cases as the ideal tool to solve some of the critical bottlenecks of production both in thin film (TF) and crystalline silicon (c-Si) technologies. The accumulated experience in these fields has brought as a consequence the possibility of using laser technology to produce new Building Integrated Photovoltaics (BIPV) products with a high degree of customization. However, to produce efficiently these personalized products it is necessary the development of optimized laser processes able to transform standard products in customized items oriented to the BIPV market. In particular, the production of semitransparencies and/or freeform geometries in TF a-Si modules and standard c-Si modules is an application of great interest in this market. In this work we present results of customization of both TF a-Si modules and standard monocrystalline (m-Si) and policrystalline silicon (pc-Si) modules using laser ablation and laser cutting processes. A discussion about the laser processes parameterization to guarantee the functionality of the device is included. Finally some examples of final devices are presented with a full discussion of the process approach used in their fabrication.
Resumo:
Esta tesis se centra en el estudio de una secuencia de procesos basados en la tecnología láser y ejecutados en dispositivos fotovoltaicos, que son imprescindibles para el desarrollo en general de las tecnologías fotovoltaicas basadas en lámina delgada y, en particular, de aquellas que utilizan silicio amorfo como absorbente, así como en aplicaciones posteriores de estas tecnologías de alto valor añadido como es la integración arquitectónica de este tipo de dispositivos. En gran parte de las tecnologías FV de lámina delgada, y muy particularmente en la de silicio amorfo, el material se deposita sobre un substrato en un área lo suficientemente grande para que se requiera de un proceso de subdivisión del dispositivo en células de tamaño adecuado, y su posterior conexión en serie para garantizar las figuras eléctricas nominales del dispositivo. Este proceso se ha desarrollado industrialmente hace años, pero no ha habido un esfuerzo científico asociado que permitiera conocer en profundidad los efectos que los procesos en si mismos tiene de forma individualizada sobre los materiales que componen el dispositivo y sus características finales. Este trabajo, desarrollado durante años en el Centro Láser de la UPM, en estrecha colaboración con Centro de Investigaciones Energéticas y Medioambientales (CIEMAT), la Universidad de Barcelona (UB), y la Universidad Politécnica de Cataluña (UPC), se centra justamente en un estudio detallado de dichos procesos, denominados habitualmente P1, P2, P3 y P4 atendiendo al orden en el que se realizan en el dispositivo. Este estudio incluye tanto la parametrización de los procesos, el análisis del efecto que los mismos producen sobre los materiales que componen el dispositivo y su comportamiento fotoeléctrico final, así como la evaluación del potencial uso de fuentes láser de última generación (ultrarrápidas) frente al estándar industrial en la actualidad que es el empleo de fuentes láser convencionales de ancho temporal en el rango de los nanosegundos. En concreto se ha estudiado en detalle las ventajas y limitaciones del uso de sistemas con diferentes rangos espectrales (IR, VIS y UV) y temporales (nanosegundos y picosegundos) para diferentes tipos de configuraciones y disposiciones tecnológicas (entendiendo por estas las habituales configuraciones en substrato y superestrato de este tipo de dispositivos). La caracterización individual de los procesos fue realizada primeramente en células de laboratorio específicamente diseñadas, abriendo nuevos planteamientos y conceptos originales para la mejora de los procesos láser de interconexión y posibilitando el empleo y desarrollo de técnicas y métodos avanzados de caracterización para el estudio de los procesos de ablación en las distintas láminas que conforman la estructura de los dispositivos fotovoltaicos, por lo que se considera que este trabajo ha propuesto una metodología completamente original, y que se ha demostrado efectiva, en este ámbito. Por último el trabajo aborda un tema de particular interés, como es el posible uso de los procesos desarrollados, no para construir los módulos fotovoltaicos en sí, sino para personalizarlos en forma y efectos visuales para potenciar su uso mediante elementos integrables arquitectónicamente, lo que es un ámbito de gran potencial de desarrollo futuro de las tecnologías fotovoltaicas de lámina delgada. En concreto se presentan estudios de fabricación de dispositivos integrables arquitectónicamente y plenamente funcionales no solo en dispositivos de silicio amorfo con efectos de transparencias y generación de formas libres, si no que también se incluye la posibilidad de hacer tales dispositivos con células de silicio cristalino estándar que es la tecnología fotovoltaica de mayor presencia en mercado. Es importante, además, resaltar que la realización de este trabajo ha sido posible gracias a la financiación obtenida con dos proyectos de investigación aplicada, MICROSIL (PSE-120000-2008-1) e INNDISOL (IPT-420000-2019-6), y los correspondientes al Plan Nacional de I+D+I financiados por el ministerio de Ciencia e Innovación y el Ministerio de Economía y Competitividad: CLÁSICO (ENE 2007- 67742-C04-04) y AMIC ENE2010-21384-C04-02. De hecho, y en el marco de estos proyectos, los resultados de este trabajo han ayudado a conseguir algunos de los hitos más importantes de la tecnología fotovoltaica en nuestro país en los últimos años, como fue en el marco de MICROSIL la fabricación del primer módulo de silicio amorfo con tecnología íntegramente española (hecho en colaboración con el CIEMAT), o la fabricación de los dispositivos para integración arquitectónica con geometrías libres que se describen en esta Tesis y que fueron parte de los desarrollos del proyecto INNDISOL. ABSTRACT This thesis focuses on the study of a sequence of laser-based technology and processes executed in photovoltaic devices, which are essential for the overall development of photovoltaic technologies based on thin film and, in particular, those using amorphous silicon as absorbent and subsequent applications of these technologies with high added value such as the architectural integration of such devices. In much of the PV thin film technologies, and particularly in the amorphous silicon material is deposited on a substrate in an area large enough so that it requires a process of subdivision of the device in cells of appropriate size, and subsequent serial connection to ensure nominal device power figures. This process has been industrially developed years ago, but there has been an associate scientific effort that would learn more about the effects that the processes themselves have either individually on the materials that make up the device and its final characteristics. This work, developed over years in the Laser Center of the UPM, in close collaboration with Centre for Energy and Environmental Research (CIEMAT), the University of Barcelona (UB) and the Polytechnic University of Catalonia (UPC)., Focuses precisely in a detailed study of these processes, usually they called P1, P2, P3 and P4 according to the order in which they perform on the device. This study includes both the parameters of the processes, the analysis of the effect they produce on the materials making up the device and its final photoelectric behavior as well as the potential use of EVALUATION of next-generation laser sources (ultrafast) versus standard industry today is the use of conventional laser sources temporal width in the range of nanoseconds. In particular we have studied in detail the advantages and limitations of using systems with different spectral ranges (IR, UV and VIS) and time (nanosecond and picosecond) for different configurations and technological provisions (meaning these typical configurations in substrate and superstrate such devices). Individual characterization of the processes was conducted primarily in laboratory cells specifically designed, opening new approaches and original concepts for improving laser interconnection processes and enabling the use and development of advanced techniques and characterization methods for studying the processes ablation in the different sheets making up the structure of the photovoltaic devices, so it is considered that this work has proposed a completely original methodology, which has proven effective in this area. Finally, the paper addresses a topic of particular interest, as is the possible use of lso developed processes, not to build the photovoltaic modules themselves but to customize fit and visual effects to enhance their use by integrated architectural elements, which is an area of great potential for future development of thin film photovoltaic technologies. Specifically studies manufacture of integrated architecturally and fully functional not only in amorphous silicon devices with transparency effects and generating freeform devices occur, if not also include the ability to make such devices with cells of standard crystalline silicon photovoltaic technology is more visible in the market. It is also important to note that the completion of this work has been possible thanks to the financing obtained with two applied research projects, Microsil (PSE-120000- 2008-1) and INNDISOL (IPT-420000-2019-6), and those for the National R & D funded by the Ministry of Science and Innovation and the Ministry of Economy and Competitiveness: CLASSIC (ENE 2007-67742-C04-04) and AMIC ENE2010-21384-C04- 02. In fact, within the framework of these projects, the results of this work have helped get some of the most important milestones of photovoltaic technology in our country in recent years, as it was under Microsil making the first module Amorphous silicon technology with entirely Spanish (made in collaboration with CIEMAT), or the manufacture of devices for architectural integration with free geometries that are described in this thesis and that were part of the project Inndisol developments.
Resumo:
Since its invention in the 1950s, semiconductor solar cell technology has evolved in great leaps and bounds. Solar power is now being considered as a serious leading contender for replacing fossil fuel based power generation. This article reviews the evolution and current state, and potential areas of near future research focus, of leading inorganic materials based solar cells, including bulk crystalline, amorphous thin-films, and nanomaterials based solar cells. Bulk crystalline silicon solar cells continue to dominate the solar power market, and continued efforts at device fabrication improvements, and device topology advancements are discussed. III-V compound semiconductor materials on c-Si for solar power generation are also reviewed. Developments in thin-film based solar cells are reviewed, with a focus on amorphous silicon, copper zinc tin sulfide, cadmium telluride, as well as nanostructured Cadmium telluride. Recent developments in the use of nano-materials for solar power generation, including silicon and gallium arsenide nanowires, are also reviewed.
Water-triggered spontaneous surface patterning in thin films of mexylaminotriazine molecular glasses
Resumo:
Surface patterning that occurs spontaneously during the formation of a thin film is a powerful tool for controlling film morphology at the nanoscale level because it avoids the need for further processing. However, one must first learn under which conditions these patterning phenomena occur or not, and how to achieve control over the surface morphologies that are generated. Mexylaminotriazine-based molecular glasses are small molecules that can readily form amorphous thin films. It was discovered that this class of materials can either form smooth films, or films exhibiting either dome or pore patterns. Depending on the conditions, these patterns can be selectively obtained during film deposition by spin-coating. It was determined that this behavior is controlled by the presence of water or, more generally, of a solvent in which the compounds are insoluble, and that the relative amount and volatility of this poor solvent determines which type of surface relief is obtained. Moreover, AFM and FT-IR spectroscopy have revealed that the thin films are amorphous independently of surface morphology, and no difference was observed at the molecular or supramolecular level. These findings make this class of materials and this patterning approach in general extremely appealing for the control of surface morphology with organic nanostructures.
Resumo:
Different amorphous structures have been induced in monocrystalline silicon by high pressure in indentation and polishing. Through the use of high-resolution transmission electron microscopy and nanodiffraction, it was found that the structures of amorphous silicon formed at slow and fast loading/unloading rates are dissimilar and inherit the nearest-neighbor distance of the crystal in which they are formed. The results are in good agreement with recent theoretical predictions. (C) 2004 American Institute of Physics.
Resumo:
A review of thin film drainage models is presented in which the predictions of thinning velocities and drainage times are compared to reported values on foam and emulsion films found in the literature. Free standing films with tangentially immobile interfaces and suppressed electrostatic repulsion are considered, such as those studied in capillary cells. The experimental thinning velocities and drainage times of foams and emulsions are shown to be bounded by predictions from the Reynolds and the theoretical MTsR equations. The semi-empirical MTsR and the surface wave equations were the most consistently accurate with all of the films considered. These results are used in an accompanying paper to develop scaling laws that bound the critical film thickness of foam and emulsion films. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effect of deposition conditions on characteristic mechanical properties - elastic modulus and hardness - of low-temperature PECVD silicon nitrides is investigated using nanoindentation. lt is found that increase in substrate temperature, increase in plasma power and decrease in chamber gas pressure all result in increases in elastic modulus and hardness. Strong correlations between the mechanical properties and film density are demonstrated. The silicon nitride density in turn is shown to be related to the chemical composition of the films, particularly the silicon/nitrogen ratio. (c) 2006 Elsevier B.V. All rights reserved.