976 resultados para Adipose-derived Microvascular Endothelial Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms underlying lymphocyte extravasation remain poorly characterized. We have recently identified junctional adhesion molecule-2 (JAM-2), and have shown that antibodies to JAM-2 stain high endothelial venules (HEVs) within lymph nodes and Peyer patches of adult mice. Here we show that mouse lymphocytes migrate in greater numbers across monolayers of endothelioma cells transfected with JAM-2. The significance of these findings to an understanding of both normal and pathologic lymphocyte extravasation prompted us to clone the human homologue of JAM-2. We herein demonstrate that an anti-JAM-2 antibody, or a soluble JAM-2 molecule, blocks the transmigration of primary human peripheral blood leukocytes across human umbilical vein endothelial cells expressing endogenous JAM-2. Furthermore, we show that JAM-2 is expressed on HEVs in human tonsil and on a subset of human leukocytes, suggesting that JAM-2 plays a central role in the regulation of transendothelial migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to describe the techniques that have been used for preparation and analysis of whole fetal liver extracts destined for in utero transplantation. Nine fetal livers between 12 and 17 weeks of gestation were prepared: cell counts and assessment of the hematopoietic cell viability were performed on cell suspensions. Hepatocytes represented 40 to 80% of the whole cell population. The remaining cells were constituted by hematopoietic cells (mainly erythroblasts), as well as by endothelial cells. The latter expressed CD34 on their surface, interfering with the assessment of CD34+ hematopoietic cells by flow cytometry. Direct visual morphologic control using alkaline phosphatase anti-alkaline phosphatase techniques was needed to differentiate hematopoietic from extra-hematopoietic CD34+ cells. Between 3.0 and 34.6 x 10(6) CD34+ viable hematopoietic cells were collected per fetal liver. Adequate differentiation of these cells into burst-forming units erythroid (BFU-E), colony-forming units granulocyte-macrophage (CFU-GM), and colony-forming units granulocyte erythroid macrophage megakaryocyte (CFU-GEMM) has been shown for each sample in clonogeneic cultures. In conclusion, fetal liver is a potential source of hematopoietic stem cells. Their numeration, based on the presence of CD34, is hampered by the expression of this antigen on other cells contained in the liver cell extract, in particular endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu)(2)cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 microM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)(2)cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 microm PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)(2)cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 microm PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaporin-1 (AQP1) is a water channel that is highly expressed in tissues with rapid O(2) transport. It has been reported that this protein contributes to gas permeation (CO(2), NO and O(2)) through the plasma membrane. We show that hypoxia increases Aqp1 mRNA and protein levels in tissues, namely mouse brain and lung, and in cultured cells, the 9L glioma cell line. Stopped-flow light-scattering experiments confirmed an increase in the water permeability of 9L cells exposed to hypoxia, supporting the view that hypoxic Aqp1 up-regulation has a functional role. To investigate the molecular mechanisms underlying this regulatory process, transcriptional regulation was studied by transient transfections of mouse endothelial cells with a 1297 bp 5' proximal Aqp1 promoter-luciferase construct. Incubation in hypoxia produced a dose- and time-dependent induction of luciferase activity that was also obtained after treatments with hypoxia mimetics (DMOG and CoCl(2)) and by overexpressing stabilized mutated forms of HIF-1α. Single mutations or full deletions of the three putative HIF binding domains present in the Aqp1 promoter partially reduced its responsiveness to hypoxia, and transfection with Hif-1α siRNA decreased the in vitro hypoxia induction of Aqp1 mRNA and protein levels. Our results indicate that HIF-1α participates in the hypoxic induction of AQP1. However, we also demonstrate that the activation of Aqp1 promoter by hypoxia is complex and multifactorial and suggest that besides HIF-1α other transcription factors might contribute to this regulatory process. These data provide a conceptual framework to support future research on the involvement of AQP1 in a range of pathophysiological conditions, including edema, tumor growth, and respiratory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacillary angiomatosis is a recently described infectious disease that usually affects immunosupressed hosts with a previous history of contact with cats. We report a rare case of bacillary angiomatosis in an immunocompetent 59-year-old woman with no history of previous exposure to cats, and atypical clinical features (fever and subcutaneous nodules with ulceration on the left ankle). Histopathology of the lesion showed extensive ulceration and reactive tumor-like vascular proliferation of the blood vessels with swollen endothelial cells and an inflammatory infiltrate including neutrophils and lymphocytes in the dermis and subcutis. Staining with the Warthin-Starry method demonstrated the presence of clustered bacilli located in the extracellular matrix adjacent to the proliferating endothelial cells. Diagnosis was confirmed with the detection of Bartonella spp. DNA in the affected skin and in bone marrow using polymerase chain reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Lymphatic vasculature plays important roles in tissue fluid homeostasis maintenance and in the pathology of human diseases. Yet, the molecular mechanisms that control lymphatic vessel maturation remain largely unknown. OBJECTIVE: We analyzed the gene expression profiles of ex vivo isolated lymphatic endothelial cells to identify novel lymphatic vessel expressed genes and we investigated the role of semaphorin 3A (Sema3A) and neuropilin-1 (Nrp-1) in lymphatic vessel maturation and function. METHODS AND RESULTS: Lymphatic and blood vascular endothelial cells from mouse intestine were isolated using fluorescence-activated cell sorting, and transcriptional profiling was performed. We found that the axonal guidance molecules Sema3A and Sema3D were highly expressed by lymphatic vessels. Importantly, we found that the semaphorin receptor Nrp-1 is expressed on the perivascular cells of the collecting lymphatic vessels. Treatment of mice in utero (E12.5-E16.5) with an antibody that blocks Sema3A binding to Nrp-1 but not with an antibody that blocks VEGF-A binding to Nrp-1 resulted in a complex phenotype of impaired lymphatic vessel function, enhanced perivascular cell coverage, and abnormal lymphatic vessel and valve morphology. CONCLUSIONS: Together, these results reveal an unanticipated role of Sema3A-Nrp-1 signaling in the maturation of the lymphatic vascular network likely via regulating the perivascular cell coverage of the vessels thus affecting lymphatic vessel function and lymphatic valve development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renin secretion is regulated by coordinated signaling between the various cells of the juxtaglomerular apparatus. The renin-secreting cells (RSC), which play a major role in the control of blood pressure, are coupled to each other and to endothelial cells by Connexin40 (Cx40)-containing channels. In this study, we show that Cx40 knockout (Cx40-/-) mice, but not their heterozygous littermates, are hypertensive due to the increase in the number of RSC, renin biosynthesis, and plasma renin. Treatment with the angiotensin II receptor AT1 antagonist candesartan or the angiotensin II-converting enzyme inhibitor ramipril reduced the blood pressure of the Cx40-/- mice to the same levels seen in wild-type (WT) mice. The elevated blood pressure of the knockout mice was not affected by clipping one renal artery (2K1C, renin-dependent model of hypertension) or after a high salt diet. Under these conditions, however, Cx40-/- mice showed an altered production and release of renin. The renin mRNA ratio between the clipped and the non-clipped kidney was lower in the knockout than in the WT 2K1C mice. This indicates that the response to a change in blood pressure was altered. The RSC of the Cx40-/- mice did not have a compensatory increase in the levels of either Cx43 or Cx37. Our data show that renin secretion is dependent on Cx40 and suggest the Cx40-/- mice may be a genetic model of renin-dependent hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally accepted that Plasmodium vivax, the most widely distributed human malaria parasite, causes mild disease and that this species does not sequester in the deep capillaries of internal organs. Recent evidence, however, has demonstrated that there is severe disease, sometimes resulting in death, exclusively associated with P. vivax and that P. vivax-infected reticulocytes are able to cytoadhere in vitro to different endothelial cells and placental cryosections. Here, we review the scarce and preliminary data on cytoadherence in P. vivax, reinforcing the importance of this phenomenon in this species and highlighting the avenues that it opens for our understanding of the pathology of this neglected human malaria parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bartonella species are fastidious bacteria that predominantly infect mammalian erythrocytes and endothelial cells and cause long-lasting bacteraemia in their reservoir hosts. Reports that describe the epidemiology of bartonellosis in Brazil are limited. This study aimed to detect and characterise Bartonella spp DNA from cat blood samples in São Luís, Maranhão, north-eastern Brazil. Among 200 cats tested for multiple genes, nine (4.5%) were positive for Bartonella spp: six cats for Bartonella henselae and three for Bartonella clarridgeiae. Based on the phylogenetic analysis of four genes, the B. henselae strain matched strains previously observed in Brazil and was positioned in the same clade as B. henselae isolates from the United States of America. Moreover, sequence alignment demonstrated that the B. clarridgeiae strain detected in the present study was the same as the one recently detected in cats from southern Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microenvironment hosting a tumor actively participates in regulating tumor cell proliferation, migration, and invasion. Among the extracellular matrix proteins enriched in the stroma of carcinomas are the tenascin family members tenascin-C and tenascin-W. Whereas tenascin-C overexpression in gliomas is known to correlate with poor prognosis, the status of tenascin-W in brain tumors has not been investigated so far. In the present study, we analyzed protein levels of tenascin-W in 38 human gliomas and found expression of tenascin-W in 80% of the tumor samples, whereas no tenascin-W could be detected in control, nontumoral brain tissues. Double immunohistochemical staining of tenascin-W and von Willebrand factor revealed that tenascin-W is localized around blood vessels, exclusively in tumor samples. In vitro, the presence of tenascin-W increased the proportion of elongated human umbilical vein endothelial cells (HUVECs) and augmented the mean speed of cell migration. Furthermore, tenascin-W triggered sprouting of HUVEC spheroids to a similar extent as the proangiogenic factor tenascin-C. In conclusion, our study identifies tenascin-W as a candidate biomarker for brain tumor angiogenesis that could be used as a molecular target for therapy irrespective of the glioma subtype.-Martina, E., Degen, M., Rüegg, C., Merlo, A., Lino, M. M., Chiquet-Ehrismann, R., Brellier, F. Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Le gène c-myc est un des oncogènes les plus fréquemment mutés dans les tumeurs humaines. Même si plus de 70 % des cancers humains montrent une dérégulation de c-Myc, les connaissances sur son rôle physiologique pendant le développement, et dans la souris adulte restent très peu connus. Récemment, notre laboratoire a pu montrer que c-Myc contrôle l'équilibre entre le renouvellement et la différenciation des cellules souches hématopoïetiques (CSH) dans la souris adulte. Ceci est probablement dû à lacapacité de c-Myc de contrôler l'entrée et la sortie des CSH de leur niche de la moelle osseuse, en régulant plusieurs molécules d'adhésion, parmi lesquelles la cadhérine-N (Wilson et al., 2004; Wilson and Trumpp, 2006). Des études utilisant un mutant d'inactivation ont demontré que la protéine c-Myc est essentielle pour le développement au delà du jour embryonnaire E9.5. Les embryons c-Myc déficients sont plus petits que la normale et possèdent de nombreux défauts; en particulier ils ne peuvent établir un système hématopoietique embryonnaire primitif (Trumpp et al., 2001). Nous avons récemment découvert que le développement du placenta dépend de la présence de cMyc. Ceci permet de proposer que certains, sinon tous, les défauts embryonnaires puorraient dériver indirectement d'un défaut nutritionnel causé par la défaillance du placenta. Afin de répondre à cette question de manière génétique, nous avons utilisé l'allele conditionel c-mycflox (Trumpp et al., 2001) en combinaison avec l'allele Sox2-Cre (Hayashi et al., 2002). Celui-ci détermine l'expression de la récombinase Cre spécifiquement dans les cellules de l'épiblaste à partir de E6.5, tandis qu'il n'y a pas, ou seulement très peu, d'activité de la récombinase Cre dans les tissus extraembryonnaires.Alnsi, cette stratégie nous permet de générer des embryons sans c-Myc qui se développent en présence d'un compartment extraembryonnaire ou c-Myc est exprimé normalement (Sox2Cre;c-mycflox2) Ces embryons, Sox2Cre;c-mycflox2 se développent et grandissent normalement tout en formant un système vasculaire normal, mais meurent à E11.5 à cause d'un sévère manque de cellules hématopoïetiques. De façon très intéressante, la seule population qui semble être présente en nombre à peu près normal dans ces embryons est celle des précurseurs et des cellules souches. Les cellules qui forment cette population prolifèrent normalement mais ne peuvent pas former des colonies in vitro, ce qui montre que ces cellules ont perdu leur activité de cellules souches. Cependant, lorsque nous avons analysé ces cellules plus en détail en éxaminant l'expression des molécules d'intégrine nous avons découvert que l'integrine ß est sur-éxprimée à la surface des cellules c-Myc déficientes. Ceci pourrait indiquer un mécanisme par lequel c-Myc régule des molécules d'adhésion sur les cellules du sang. En conséquence, en absence de c-Myc, l'adhésion et la migration des cellules du sang de l'AGM (Aorte-Gonade-Mésonéphros) vers le foie de l'embryon, à travers le système vasculaire, est compromise. En outre, nous avons pu montrer que les hépatocytes du foie, qui constitue le site principal de formation des cellules hématopoïetiques pendant le développement, est sévèrement atteint dans des Sox2Cre;c-mycflox2 embryons. Ceci n'est pas du à un défaut propre aux cellules hépatiques qui ont perdu c-Myc, mais résulte plutôt de l'absence de cellules hématopoietïques qui normalement colonisent le foie à ce stade du développement. Ces résultats représentent la première preuve directe que le développement des hépatoblastes est dépendant de signaux provenant des cellules du sang. Summary The myc gene is one of the most frequently mutated oncogenes in human tumors. It is found to be mis-regulated in over 70% of all human cancers. However, our knowledge about its physiological role in mammalian development and adulthood remains limited. Recent work in our laboratory showed that c-Myc controls the balance between hematopoietic stem cell (HSC) self-renewal and differentiation in the adult mouse. This is likely due to the capacity of c-Myc to control entry and exit of HSCs from the bone marrow niche by regulating a number of cell adhesion molecules including N-cadherin (Wilson et al., 2004; Wilson and Trumpp 2006). During development knockout studies showed that c-Myc is required for embryonic development beyond embryonic day (E) 9.5. c-Myc deficient embryos are severely reduced in size and show multiple defects including the failure to establish a primitive hematopoietic system (Trumpp et al., 2001). Importantly, we recentry uncovered that placental development also seems to depend on normal c-Myc function, raising the possibility that some if not all of the embryonic defects observed could be mediated indirectly by a nutrition defect caused by placental failure. To address this possibility genetically, we took advantage of the conditional c-mycflox allele (Trumpp et al., 2001) in combination with the Sox2-Cre allele (Hayashi et al., 2002), in which Cre expression is specifically targeted to all epiblast cells by E6.5, while there is little or no Cre activity inextra-embryonic lineages. Thus, this strategy allows the generation of c-Myc deficient embryos, which develop within a normal c-Myc expressing extra-embryonic compartment (Sox2Cre;c-mycflox2) Such Sox2Cre;c-mycflox2 embryos develop and grow appropriately and form a normal vascular system but die at E11.5 due to a severe lack of blood cells. Interestingly, the only hematopoietic population that seems to be present in almost normal numbers in the embryo is the stem/progenitor cell population. Cells within this populatíon proliferate normal but can not give rise to hematopoietic colonies in vitro showing that functional hematopoietic stem cell (HSC) activity is lost. However, when we analyzed these phenotypic HSCs in more detail and examined integrin expression in mutant stem/progenitor cells, we observed that ß1-integrin is upregulated. This may point to a potential mechanism whereby c-Myc regulates adhesíon molecules on hematopoietic cells and thereby disturbs adhesion and migration from the AGM (aorta-gonads-mesonephros) through the vascular system to the liver. Furthermore, we uncovered that the fetal liver, the main site of hematopoietic expansion at that stage, is severely affected in Sox2Cre;c-mycflox2 embryos and that this is not due to a cell intrinsic defect of c-Myc deficient hepatocytes but rather due to the lack of hematopoietic cells that normally colonize the fetal liver at that stage of development. This provides first direct evidence that hepatoblast development depends on signals derived from blood cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.