976 resultados para Accumulation area ratio
Resumo:
Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2) in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.). Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 µatm) and a control treatment (pCO2 480 µatm) until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship betweenpCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.
Resumo:
Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.
Resumo:
The Paleocene-Eocene Thermal Maximum (PETM), ca. 55 Ma, was a period of extreme global warming caused by rapid emission of greenhouse gases. It is unknown what ended this episode of greenhouse warming, but high oceanic export productivity over thousands of years (as indicated by high accumulation rates of barium, Ba) may have been a factor in ending this warm period by carbon sequestration. However, Ba has a short oceanic residence time (~10 k.y.), so a prolonged global increase in Ba accumulation rates requires an increase in input of Ba to the ocean, increasing barite saturation. We use a novel proxy for barite saturation (Sr/Ba in marine barite) to demonstrate that the seawater saturation state with respect to barite did not change across the PETM. The observations of increased barite burial, no change in saturation, and the short residence time can be reconciled if Ba burial decreased at continental margin and shelf sites due to widespread occurrence of suboxic conditions, leading to Ba release into the water column, combined with increased biological export production at some pelagic sites, resulting in Ba sink reorganization.
Resumo:
A record of changes in Pb and Sr isotopic composition of two cores (DSDP 86-576A and LL44- GPC-3) from the red clay region of the central North Pacific has been determined for the past 60-65 million years. The isotope records of the eolian silicate fraction of the red clays reflect the change in source area as the core sites migrated under different wind systems. The Sr isotope compositions of eolian silicate material are consistent with Asian loess and North American arc volcanism that has been recognized from mineralogical studies. The silicate-bound eolian Pb isotopic compositions similarly reflect Asian loess and arc volcanism. The isotope records of three ferromanganese crusts from similar locations in the central Pacific are similar to the eolian component of red clays, but offset to less radiogenic values. This may be due to two mechanisms: (1) Pb that can be removed from eolian material by seawater is much less radiogenic, or less likely (2) hydrothermal Pb can be transported further away from venting sites through particle exchange with seawater, despite hydrothermal venting acting as a net sink of oceanic Pb. The temporal changes in Pb isotopes in the ferromanganese crusts, bulk red clays and eolian silicates are similar although offset from each other suggesting that eolian deposition is an important source of Pb to seawater and to ferromanganese crusts. This contrasts with the Atlantic and Southern Ocean where more intense deep water flow leads to isotopic gradients in FeMn crusts that do not reflect surface water conditions immediately above the crust. A mechanism is proposed which accounts for Pacific deepwater Pb being isotopically influenced by eolian deposition.
Resumo:
High-resolution percent Corg and delta18Oforam records obtained from Panama Basin core Atlantis II 54-25PC and additional data from nearby core P7 show that enhanced burial of organic carbon has characterized every major glacial period for the last 500 kyr in that area. Both Corg concentration and mass accumulation rate profiles exhibit a sawtooth pattern with maxima occurring typically in the later stages of glacial periods. Comparison with dust records suggests that the carbon accumulation rate profile reflects both the upwelling history and a variable rate of iron input during the late Quaternary. The sawtooth character may derive from increased wind velocities and rates of upwelling during glacials which are indirectly related to ice volume (Sarnthein et al., 1988). The rapid decline in export production at the end of glacials in the equatorial Pacific may be attributed to the retreat of ice sheets (thus reduced wind velocities and upwelling) coupled with a coincident decline in atmospheric dust load and/or delivery rate. The Corg accumulation rate profiles do not correlate well with atmospheric CO2 records. For example, atmospheric CO2 was already at a minimum 40 kyr ago when production in the Panama Basin began increasing dramatically, commensurate with an increase in global dust levels. Using the relationship between the degree of photosynthetic fractionation and the concentration of free CO2 in the surface ocean postulated by Popp et al. (1989), delta13Corg measurements made on core P7 show that Panama Basin surface waters have been supplying CO2 to the atmosphere continually for at least the last 50 kyr. There is no evidence for a flux of CO2 into the surface ocean in this area at any time during this period despite the higher production. If the Panama Basin cores are representative of the eastern and central equatorial Pacific, then these observations weaken the influence on CO2 drawdown postulated for increased glacial productivity at low latitudes.
Resumo:
We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.
Resumo:
The raw material for these investigations are samples from marine (sub)surface sediments around the northern part of the Antarctic Peninsula. They had been sampled in the years 1981 to 1986 during several expeditions of the research vessels Meteor, Polarstern and Walther Herwig. 83 box core, gravity core and dredge samples from the area of the Bransfield Strait, the Powell Basin and the northern Weddell Sea have been examined for their grain-size distribution, their mineralogical and petrographical composition. Silt prevails and its clay proportions exceed 25% wt. in water depths greater than 2000 m. The granulometrical results reveal some typical sedimentation processes within the area of investigation. While turbiditic processes together with sediment input from melting icebergs control the sedimentation in the Weddell Sea, the South Orkney Island Plateau and the Powell Basin, the fine grained material from Bransfield Strait mainly relies on marine currents in the shelf area. In addition, the direct sediment input of coarse shelf sediments from the Bransfield Strait into the Powell Basin through submarine canyons could be proven. Variations in the grain-size composition with sediment depth are smalI. The mineral composition of the clay and fine silt fractions is quite uniform in all samples. There are (in decreasing order): illite, montmorillonite, chlorite, smectite, mixed-Iayers, as well as detrital quartz and feldspars. A petrographically based sediment stratigraphy can be established in using the considerable changes in the chlorite- and Ca-plagioclase portions in samples from Core 224. For this sedimentation area a mean sedimentation rate of 7 cm/1000 a is assumed. Remarkable changes in the portions of amorphous silica components - diatom skeletons and volcanic glass shards - appear all over the area of investigation. They contribute between 4-83 % to the clay and fine silt fraction. Several provinces according to the heavy mineral assemblages in the fine sand fraction can be distinguished: (i) a province remarkably influenced by minerals of volcanic origin south and north of the South Shetland Islands; (ii) a small strip with sediment dominated by plutonic material along the western coast of the Antarctic Peninsula and (iii) a sediment controlled by metamorphic minerals and rock fragments in the area of the Weddell Sea and Elephant Island. While taking the whole grain-size spectrum into account a more comprehensive interpretation can be given: the accessoric but distinct appearance of tourmaline, rutile and zircon in the heavy mineral assembly along the northwestern coast of the Antarctic Peninsula is in agreement with the occurrence of acid volcanic rock pieces in the coarse fraction of the ice load detritus in this region. In the vicinity of the South Shetland Islands chlorite appears in remarkable portions in the clay fraction in combination with leucoxene, sphene and olivine, and pumice as well as pyroclastic rocks in the medium and coarse grain fractions, respectively. Amphiboles and amphibole-schists are dominant on the South Orkney Island Plateau. In the sediments of the northwestern Weddell Sea the heavy mineral phases of red spinel, garnet, kyanite and sillimanite in connection with medium to highgrade metamorphic rocks especially granulitic gneisses, are more abundant. A good conformity between the ice rafted rock sampIes and the rocks in the island outcrops could be proven, especially in the vicinity of offshore islands nearby. On the continent enrichments of rock societies and groups appear in spacious outlines: acid effusive rocks in the west of the ice divide on the Antarctic Peninsula, clastic sedimentites at the tip of the Antarctic Peninsula and granoblastic gneisses in central and eastern Antarctica. Coarse grain detritus with more than 1 cm of diameter must have been rafted by icebergs. These rock fragments are classified as rock types, groups and societies. The spacial distribution of their statistically determined weight relations evidently shows the paths of the iceberg drift and in nexus with already known iceberg routes also point to the possible areas of provenance, provided that the density of sample locations and the number of rock pieces are sufficient.
Resumo:
Marine biological productivity has been invoked as a possible climate driver during the early Paleogene through its potential influence on atmospheric carbon dioxide concentrations. However, the relationship of export productivity (the flux of organic carbon (C) from the surface ocean to the deep ocean) to organic C burial flux (the flux of organic C from the deep ocean that is buried in marine sediments) is not well understood. We examine the various components involved with atmosphere-to-ocean C transfer by reconstructing early Paleogene carbonate and silica production (using carbonate and silica mass accumulation rates (MARs)); export productivity (using biogenic barium (bio-Ba) MARs); organic C burial flux (using reactive phosphorus (P) MARs); redox conditions (using uranium and manganese contents); and the fraction of organic C buried relative to export productivity (using reactive P to bio-Ba ratios). Our investigations concentrate on Paleocene/Eocene sections of Sites 689/690 from Maud Rise and Site 738 from Kerguelen Plateau. In both regions, export productivity, organic C burial flux, and the fraction of organic C buried relative to export productivity decreased from the Paleocene/early Eocene to the middle Eocene. A shift is indicated from an early Paleogene two-gyre circulation in which nutrients were not efficiently recycled to the surface via upwelling in these regions, to a circulation more like the present day with efficient recycling of nutrients to the surface ocean. Export productivity was enhanced for Kerguelen Plateau relative to Maud Rise throughout the early Paleogene, possibly due to internal waves generated by the plateau regardless of gyre circulation.
Resumo:
A reconstruction of Milankovitch to millennial-scale variability of sea-surface temperature (SST) and sea-surface productivity in the Pleistocene mid-latitude North Atlantic Ocean (MIS 16-9) and its relationship to ice sheet instability was carried out on sediments from IODP Site U1313. This reconstruction is based on alkenone and n-alkane concentrations, Uk37' index, total organic carbon (TOC) and carbonate contents, X-Ray diffraction (XRD) data, magnetic susceptibility, and accumulation rates. Increased input of ice-rafted debris (IRD) occurred during MIS 16, 12, and 10, characterized by high concentrations of dolomite, quartz, and feldspars and elevated accumulation rates of terrigenous matter. Minimum input values of terrigenous matter, on the other hand, were determined for MIS 13 and 11. Peak values of dolomite, coinciding with quartz, plagioclase, and kalifeldspar peaks and maxima in long-chain n-alkanes indicative for land plants, are interpreted as Heinrich-like Events related to sudden instability of the Laurentide Ice Sheet during early and late (deglacial) phases of the glacials. The coincidence of increased TOC values with elevated absolute concentrations of alkenones suggest increased glacial productivity, probably due to a more southern position of the Polar Front. Alkenone-based SST reached absolute maxima of about 19°C during MIS 11.3 and absolute minima of <10°C during MIS 12 and 10. Within MIS 11, prominent cooling events (MIS 11.22 and 11.24) occurred. The absolute SST minima recorded directly before and after the glacial maxima MIS 10.2 and 12.2, are related to Heinrich-like Event meltwater pulses, as supported by the coincidence of SST minima and maxima in C37:4 alkenones and dolomite. These sudden meltwater pulses - especially during Terminations IV and V - probably caused a collapse of phytoplankton productivity as indicated by the distinct drop in alkenone concentrations. Ice-sheet disintegration and subsequent surges and outbursts of icebergs and meltwater discharge may have been triggered by increased insolation in the Northern High Latitudes.
Resumo:
Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at a subsurface depth of ~2-20 m; Mn-oxide material is limited to the upper 2 m of these mounds. The nontronite forms intervals of up to a few metres thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. The metalliferous phases represent essentially authigenic precipitates, apparently formed in the presence of upwelling basement-derived hydrothermal solutions which dissolved pre-existent pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major-element composition between nontronitic material from varying locations within the mounds; and (2) adjacent granules from a given sample have very similar compositions and are internally homogeneous. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of solution Eh and composition during nontronite formation. The Pb-isotopic composition of the nontronite and Mn-oxide sediments indicates that they were formed from solutions which contained variable proportions of basaltic Pb, introduced into pore waters by basement-derived solutions, and of normal-seawater Pb. However, the Sr-isotopic composition of these sediments is essentially indistinguishable from the value for modern seawater. On the basis of 18O/16O ratios, formation temperatures of ~20-30°C have been estimated for the nontronites. By comparison, temperatures of up to 11.5°C at 9 m depth have been directly measured within the mounds and heat flow data suggest present basement-sediment interface temperatures of 15-25°C.