945 resultados para 640200 Primary Mining and Extraction Processes
Resumo:
Highway infrastructure plays a significant role in society. The building and upkeep of America’s highways provide society the necessary means of transportation for goods and services needed to develop as a nation. However, as a result of economic and social development, vast amounts of greenhouse gas emissions (GHG) are emitted into the atmosphere contributing to global climate change. In recognizing this, future policies may mandate the monitoring of GHG emissions from public agencies and private industries in order to reduce the effects of global climate change. To effectively reduce these emissions, there must be methods that agencies can use to quantify the GHG emissions associated with constructing and maintaining the nation’s highway infrastructure. Current methods for assessing the impacts of highway infrastructure include methodologies that look at the economic impacts (costs) of constructing and maintaining highway infrastructure over its life cycle. This is known as Life Cycle Cost Analysis (LCCA). With the recognition of global climate change, transportation agencies and contractors are also investigating the environmental impacts that are associated with highway infrastructure construction and rehabilitation. A common tool in doing so is the use of Life Cycle Assessment (LCA). Traditionally, LCA is used to assess the environmental impacts of products or processes. LCA is an emerging concept in highway infrastructure assessment and is now being implemented and applied to transportation systems. This research focuses on life cycle GHG emissions associated with the construction and rehabilitation of highway infrastructure using a LCA approach. Life cycle phases of the highway section include; the material acquisition and extraction, construction and rehabilitation, and service phases. Departing from traditional approaches that tend to use LCA as a way to compare alternative pavement materials or designs based on estimated inventories, this research proposes a shift to a context sensitive process-based approach that uses actual observed construction and performance data to calculate greenhouse gas emissions associated with highway construction and rehabilitation. The goal is to support strategies that reduce long-term environmental impacts. Ultimately, this thesis outlines techniques that can be used to assess GHG emissions associated with construction and rehabilitation operations to support the overall pavement LCA.
Resumo:
The biopharmaceutical industry has a growing demand and an increasing need to improve the current virus purification technologies, especially as more and more vaccines are produced from cell-culture derived virus particles. Downstream purification strategies can be expensive and account for 70% of the overall manufacturing costs. The economic pressure and purification processes can be particularly challenging when the virus to be purified is small, as in our model virus, porcine parvovirus (PPV). Our efforts are focused on designing an easy, economical, scalable and efficient system for virus purification, and we focused on aqueous two-phase systems. Industry acceptable standards for virus vaccine recovery can be as low as 30% due to demand of high final titer, virus transduction inhibitors and presence of empty or defective virus capsids as impurities. We have overcome these shortcomings by recovering a high 64% of infectious virus using an aqueous two-phase system. We used high molecular weight polymer and citrate salt to achieve a good yield and eliminated the major contaminant bovine serum albumin. Viruses are also studied for ensuring pure and safe drinking water. Low pressure microfiltrations are continuously being investigated for water filters as they allow high permeate flux and low fouling. Viruses such as PPV are small enough to pass through the microporous membranes. Control of viruses in water is crucial for public health and we have designed an affinity based membrane filter to capture virus. Nanofibers have a high surface to volume ratio providing a highly accessible surface area for virus adsorption. Chitosan an insoluble, biocompatible and biodegradable polymer was used for adsorbing trimer peptide WRW. About 0.2 μmoles of cysteine terminal WRW peptide was conjugated to amine terminal chitosan using maleimide conjugation chemistry. We achieved 90-99% virus removal from water adjusted to a neutral pH. The virus removal from affinity based chitosan was attributed to electrostatic and hydrophobic driven binding effect.
Resumo:
In this report, we attempt to define the capabilities of the infrared satellite remote sensor, Multifunctional Transport Satellite-2 (MTSAT-2) (i.e. a geosynchronous instrument), in characterizing volcanic eruptive behavior in the highly active region of Indonesia. Sulfur dioxide data from NASA's Ozone Monitoring Instrument (OMI) (i.e. a polar orbiting instrument) are presented here for validation of the processes interpreted using the thermal infrared datasets. Data provided from two case studies are analyzed specifically for eruptive products producing large thermal anomalies (i.e. lava flows, lava domes, etc.), volcanic ash and SO2 clouds; three distinctly characteristic and abundant volcanic emissions. Two primary methods used for detection of heat signatures are used and compared in this report including, single-channel thermal radiance (4-µm) and the normalized thermal index (NTI) algorithm. For automated purposes, fixed thresholds must be determined for these methods. A base minimum detection limit (MDL) for single-channel thermal radiance of 2.30E+05 Wm- 2sr-1m-1 and -0.925 for NTI generate false alarm rates of 35.78% and 34.16%, respectively. A spatial comparison method, developed here specifically for use in Indonesia and used as a second parameter for detection, is implemented to address the high false alarm rate. For the single-channel thermal radiance method, the utilization of the spatial comparison method eliminated 100% of the false alarms while maintaining every true anomaly. The NTI algorithm showed similar results with only 2 false alarms remaining. No definitive difference is observed between the two thermal detection methods for automated use; however, the single-channel thermal radiance method coupled with the SO2 mass abundance data can be used to interpret volcanic processes including the identification of lava dome activity at Sinabung as well as the mechanism for the dome emplacement (i.e. endogenous or exogenous). Only one technique, the brightness temperature difference (BTD) method, is used for the detection of ash. Trends of ash area, water/ice area, and their respective concentrations yield interpretations of increased ice formation, aggregation, and sedimentation processes that only a high-temporal resolution instrument like the MTSAT-2 can analyze. A conceptual model of a secondary zone of aggregation occurring in the migrating Kelut ash cloud, which decreases the distal fine-ash component and hazards to flight paths, is presented in this report. Unfortunately, SO2 data was unable to definitively reinforce the concept of a secondary zone of aggregation due to the lack of a sufficient temporal resolution. However, a detailed study of the Kelut SO2 cloud is used to determine that there was no climatic impacts generated from this eruption due to the atmospheric residence times and e-folding rate of ~14 days for the SO2. This report applies the complementary assets offered by utilizing a high-temporal and a high-spatial resolution satellite, and it demonstrates that these two instruments can provide unparalleled observations of dynamic volcanic processes.
Resumo:
Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.
Resumo:
Complementary to automatic extraction processes, Virtual Reality technologies provide an adequate framework to integrate human perception in the exploration of large data sets. In such multisensory system, thanks to intuitive interactions, a user can take advantage of all his perceptual abilities in the exploration task. In this context the haptic perception, coupled to visual rendering, has been investigated for the last two decades, with significant achievements. In this paper, we present a survey related to exploitation of the haptic feedback in exploration of large data sets. For each haptic technique introduced, we describe its principles and its effectiveness.
Resumo:
Objectives: Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Methods: Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Results: Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. Conclusions: These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.
Resumo:
Sustainable and equitable management of biodiversity in protected areas inhabited by indigenous peoples is often a challenge. It requires an intercultural dialogue based on local norms of resource use and indigenous knowledge. Moreover, mechanisms that generate economic incentives must be able to compete with income from illegal activities such as logging, mining, and land trafficking. Finally, efforts are needed to ensure that regulations and policies on conservation and resource extraction do not overlap and contradict each other, as this hampers efforts both to conserve biodiversity and to promote development at the local level.
Resumo:
Water-conducting faults and fractures were studied in the granite-hosted A¨ spo¨ Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours–days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption Kds are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.
Resumo:
Abstract Objectives: HIV 'treatment as prevention' (TasP) describes early treatment of HIV-infected patients intended to reduce viral load and transmission. Crucial assumptions for estimating TasP's effectiveness are the underlying estimates of transmission risk. We aimed to determine transmission risk during primary infection, and of the relation of HIV transmission risk to viral load. Design: A systematic review and meta-analysis. Methods: We searched PubMed and Embase databases for studies that established a relationship between viral load and transmission risk, or primary infection and transmission risk, in serodiscordant couples. We analysed assumptions about the relationship between viral load and transmission risk, and between duration of primary infection and transmission risk. Results: We found 36 eligible articles, based on six different study populations. Studies consistently found that larger viral loads lead to higher HIV transmission rates, but assumptions about the shape of this increase varied from exponential increase to saturation. The assumed duration of primary infection ranged from 1.5 to 12 months; for each additional month, the log10 transmission rate ratio between primary and asymptomatic infection decreased by 0.40. Conclusion: Assumptions and estimates of the relationship between viral load and transmission risk, and the relationship between primary infection and transmission risk, vary substantially and predictions of TasP's effectiveness should take this uncertainty into account.
Resumo:
The present study seeks to obtain deeper insight into the learning processes in practical training in primary teacher education in Upper Austria. Based on the offer-and-use model of instruction, 230 diary entries of 46 student teachers (28 students in their third semester, 18 students in their fifth semester) were analysed with legard to the learning topics, learning sourcesJ and Ìealning processes involved in practical training. The results show a variety of learning forms, ranging from the unreflective imitation of school mentors' practices to active knowledge construction. In addition, they illustrate that the available learning offers were suboptimally utilized by stuclent teachers who failed to work systernatically and continuously on their professional development.
Resumo:
Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.
Resumo:
Ore-forming and geoenviromental systems commonly involve coupled fluid flowand chemical reaction processes. The advanced numerical methods and computational modeling have become indispensable tools for simulating such processes in recent years. This enables many hitherto unsolvable geoscience problems to be addressed using numerical methods and computational modeling approaches. For example, computational modeling has been successfully used to solve ore-forming and mine site contamination/remediation problems, in which fluid flow and geochemical processes play important roles in the controlling dynamic mechanisms. The main purpose of this paper is to present a generalized overview of: (1) the various classes and models associated with fluid flow/chemically reacting systems in order to highlight possible opportunities and developments for the future; (2) some more general issues that need attention in the development of computational models and codes for simulating ore-forming and geoenviromental systems; (3) the related progresses achieved on the geochemical modeling over the past 50 years or so; (4) the general methodology for modeling of oreforming and geoenvironmental systems; and (5) the future development directions associated with modeling of ore-forming and geoenviromental systems.
Resumo:
PURPOSE FGFR3 is considered a good therapeutic target for bladder cancer. However, to our knowledge it is unknown whether the FGFR3 status of primary tumors is a surrogate for related metastases, which must be targeted by FGFR targeted systemic therapies. We assessed FGFR3 protein expression in primary bladder tumors and matched nodal metastases. MATERIALS AND METHODS We examined matched primary tumor and nodal metastases from 150 patients with bladder cancer clinically staged as N0M0. Four samples per patient were incorporated into a tissue microarray and FGFR3 expression was assessed by immunohistochemistry. FGFR3 expression was tested for an association with categorical clinical data using the Fisher exact test, and with overall and recurrence-free survival by Kaplan-Meier analysis. RESULTS Duplicate spots from primary tumors and lymph node metastases were highly concordant (OR 8.6 and 16.7, respectively, each p <0.001). Overall FGFR protein expression levels did not differ between primary and metastatic lesions (p = 0.78). Up-regulated expression was recorded in 53 of 106 evaluable primary tumor spots and 56 matched metastases. Concordance of FGFR3 expression levels in 79 matched primary tumor and metastasis specimens was high (OR 8.45, p <0.001). In 15 and 12 patients expression was up-regulated in only metastasis and in only the primary tumor, respectively. Overall and recurrence-free survival was not related to FGFR3 expression. CONCLUSIONS FGFR3 expression in matched primary and metastasized bladder cancer specimens showed good but not absolute concordance. Thus, in most patients primary tumor FGFR3 status can guide the selection of FGFR targeted therapy.
Resumo:
The Health Action Process Approach (HAPA) assumes that volitional processes are important for effective behavioral change. However, intraindividual associations have not yet been tested in the context of smoking cessation. This study examined the inter- and intraindividual associations between volitional HAPA variables and daily smoking before and after a quit attempt. Overall, 100 smokers completed daily surveys on mobile phones from 10 days before until 21 days after a self-set quit date, including self-efficacy, action planning, action control, and numbers of cigarettes smoked. Negative associations between volitional variables and daily numbers of cigarettes smoked emerged at the inter- and intraindividual level. Except for interindividual action planning, associations were stronger after the quit date than before the quit date. Self-efficacy, planning and action control were identified as critical inter- and intraindividual processes in smoking cessation, particularly after a self-set quit attempt when actual behavior change is performed.
Resumo:
OBJECTIVE To determine if adequacy of randomisation and allocation concealment is associated with changes in effect sizes (ES) when comparing physical therapy (PT) trials with and without these methodological characteristics. DESIGN Meta-epidemiological study. PARTICIPANTS A random sample of randomised controlled trials (RCTs) included in meta-analyses in the PT discipline were identified. INTERVENTION Data extraction including assessments of random sequence generation and allocation concealment was conducted independently by two reviewers. To determine the association between sequence generation, and allocation concealment and ES, a two-level analysis was conducted using a meta-meta-analytic approach. PRIMARY AND SECONDARY OUTCOME MEASURES association between random sequence generation and allocation concealment and ES in PT trials. RESULTS 393 trials included in 43 meta-analyses, analysing 44 622 patients contributed to this study. Adequate random sequence generation and appropriate allocation concealment were accomplished in only 39.7% and 11.5% of PT trials, respectively. Although trials with inappropriate allocation concealment tended to have an overestimate treatment effect when compared with trials with adequate concealment of allocation, the difference was non-statistically significant (ES=0.12; 95% CI -0.06 to 0.30). When pooling our results with those of Nuesch et al, we obtained a pooled statistically significant value (ES=0.14; 95% CI 0.02 to 0.26). There was no difference in ES in trials with appropriate or inappropriate random sequence generation (ES=0.02; 95% CI -0.12 to 0.15). CONCLUSIONS Our results suggest that when evaluating risk of bias of primary RCTs in PT area, systematic reviewers and clinicians implementing research into practice should pay attention to these biases since they could exaggerate treatment effects. Systematic reviewers should perform sensitivity analysis including trials with low risk of bias in these domains as primary analysis and/or in combination with less restrictive analyses. Authors and editors should make sure that allocation concealment and random sequence generation are properly reported in trial reports.