943 resultados para 5-HT2A RECEPTORS
Resumo:
RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauche−gauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.
Resumo:
Spider venoms contain a plethora of insecticidal peptides that act on neuronal ion channels and receptors. Because of their high specificity, potency and stability, these peptides have attracted much attention as potential environmentally friendly insecticides. Although many insecticidal spider venom peptides have been isolated, the molecular target, mode of action and structure of only a small minority have been explored. Sf1a, a 46-residue peptide isolated from the venom of the tube-web spider Segesteria florentina, is insecticidal to a wide range of insects, but nontoxic to vertebrates. In order to investigate its structure and mode of action, we developed an efficient bacterial expression system for the production of Sf1a. We determined a high-resolution solution structure of Sf1a using multidimensional 3D/4D NMR spectroscopy. This revealed that Sf1a is a knottin peptide with an unusually large β-hairpin loop that accounts for a third of the peptide length. This loop is delimited by a fourth disulfide bond that is not commonly found in knottin peptides. We showed, through mutagenesis, that this large loop is functionally critical for insecticidal activity. Sf1a was further shown to be a selective inhibitor of insect voltage-gated sodium channels, consistent with its 'depressant' paralytic phenotype in insects. However, in contrast to the majority of spider-derived sodium channel toxins that function as gating modifiers via interaction with one or more of the voltage-sensor domains, Sf1a appears to act as a pore blocker.
Resumo:
Thermal rearrangement of diethylamino 5-(m-methoxyphenoxy)-pent-2-yne (3) gives 1-(m-methexyphenoxy)-pent-3,4-diene (14) in about 8% yield. Hydration of the latter yields 1-(m-methoxyphenoxy)-pentan-4-one (6), which has been synthesised by an unambiguous route. A mechanism of formation of the allene (14) from the amine (3) has been suggested.
Resumo:
Digital image
Resumo:
Fruit drop can cause major yield losses in Australian lychee orchards, the severity varying with cultivar and season. Research in China, South Africa and Israel has demonstrated the potential for synthetic auxins used as foliar sprays to reduce fruit drop in lychee. Trials tested the efficacy of the synthetic auxin 3-5-6 trichloro-2-phridyl-oxyacetic acid (TPA) applied as a foliar spray at 50 ppm on fruit drop and fruit size on the cultivars ‘Fay Zee Siu’, ‘Kaimana’, ‘Kwai Mai Pink’, ‘Souey Tung’ and ‘Tai So’. TPA reduced fruit drop when applied to fruit greater than 12 mm in length but increased fruit drop when fruit were smaller. Fruit size at the time of application had less effect on the response than the level of natural fruit drop. When natural fruit drop was high, TPA significantly reduced it; by up to 18.7 in ‘Fay Zee Siu’, 37.1 in ‘Kaimana’, 39.8 in ‘Kwai Mai Pink’, 15.1 in ‘Souey Tung’ and 7.7 in ‘Tai So’. TPA was less effective when natural fruit drop was low. TPA increased the number of large fruit and frequently increased the number of small fruit at harvest. The small fruit were associated with an increase in the retention of fruit with poorly developed (chicken tongue) seed. Average fruit size was generally larger (up to 12.7 in ‘Souey Tung’ and 22 in ‘Tai So’) with TPA applications.
Resumo:
The aim of this study was to validate a multiplex PCR for the species identification and serotyping of Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15. All 15 reference strains and 411 field isolates (394 from Australia, 11 from Indonesia, five from Mexico and one from New Zealand) of A. pleuropneumoniae were tested with the multiplex PCR. The specificity of this multiplex PCR was validated on 26 non-A. pleuropneumoniae species. The multiplex PCR gave the expected results with all 15 serovar reference strains and agreed with conventional serotyping for all field isolates from serovars 1 (n = 46), 5 (n = 81), 7 (n = 80), 12 (n = 16) and serovar 15 (n = 117). In addition, a species-specific product was amplified in the multiplex PCR with all 411 A. pleuropneumoniae field isolates. Of 25 nontypeable field isolates only two did not yield a serovar-specific band in the multiplex PCR. This multiplex PCR for serovars 1, 5, 7, 12 and 15 is species specific and capable of serotyping isolates from diverse locations. Significance and Impact of the Study A multiplex PCR that can recognize serovars 1, 5, 7, 12 and 15 of A. pleuropneumoniae was developed and validated. This novel diagnostic tool will enable frontline laboratories to provide key information (the serovar) to guide targeted prevention and control programmes for porcine pleuropneumonia, a serious economic disease of pigs. The previous technology, traditional serotyping, is typically provided by specialized reference laboratories, limiting the capacity to respond to this key disease.
Resumo:
CI1H19N4OIIP2.Na+.TH2 O, Mr = 594.08, is orthorhombic, space group P21212 l, with a = 6.946 (2), b = 12.503 (4), c = 28.264 (8)/k, U = 2454.6 A, a, D x = 1.61 Mg m -a, Z = 4, ~t(CuKa) = 2.612 mm -1, F(000) = 1244. Final R = 0.101 for 1454 observed reflections. The cytosine base is in the anti conformation with respect to the sugar (ZCN = 62"60) . The ribose exhibits an uncommon C(l')exo-C(2')endo puckering. The pyrophosphate has a characteristic staggered geometry. The conformation about P(2)-O(7') is trans (-103.4°). This makes CDPethanolamine more extended compared to the folded geometry of CDP-choline, which has a gauche conformation (71.3 o). The molecular interactions in the extended crystal structure, however, are similar to those found in CDP-choline, with the CMP-5' portions tightly bound by metal ligation and the phosphorylethanolamine parts only loosely held by water molecules.
Resumo:
Heterometallic {3d-4f-5d} aggregates with formula [{LMe2Ni(H2O)Ln(H2O)4.5}2{W(CN)8}2]·15H2O, (LMe2 stands for N,N-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff-base ligand) with Ln = Gd, Tb, Dy, have been obtained by reacting bimetallic [LMe2Ni(H2O)2Ln(NO3)3] and Cs3{W(CN)8} in H2O. The hexanuclear complexes are organized in 1-D arrays by means of hydrogen bonds established between the solvent molecules coordinated to Ln and the CN ligands of an octacyanometallate moiety. The X-ray structure was solved for the Tb derivative. Magnetic behavior indicates ferromagnetic {W–Ni} and {Ni–Ln} interactions (JNiW = 18.5 cm-1, JNiGd = 1.85 cm-1) as well as ferromagnetic intermolecular interactions mediated by the H-bonds. Dynamic magnetic susceptibility studies reveal slow magnetic relaxation processes for the Tb and Dy derivatives, suggesting SMM type behavior for these compounds.
Resumo:
Digital image
Resumo:
5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.
Resumo:
Knoevenagel condensation of 2-acylcyclohexanones or 2-ethoxycarbonylcyclohexanone with either cyanoacetamide or malononitrile followed by silver salt alkylation gave the 5,6,7,8-tetrahydroisoquinolines (3a–i). Chromic acid oxidation of the 5,6,7,8-tetrahydroisoquinolines (3a–i) to the corresponding tetralones (4a–i) followed by sodium borohydride reduction and p-toluenesulphonic acid-catalysed dehydration of the resulting alcohols (5a–i) gave the 5,6-dihydroisoquinolines (6a–i). Reaction of 5,6-dihydroisoquinolines (6a–g) with potassium amide in liquid ammonia gave a mixture of the 1,3-dihydroisoquinolines (7a–g) and the isoquinolines (8a–g). The C-1 unsubstituted 1,2-dihydroisoquinoline (7c) was found to be very unstable. In the case of the 5,6-dihydroisoquinolines (6h and 6i), reaction of potassium amide in liquid ammonia resulted in a mixture of 1-aminoisoquinoline (9) and the isoquinolines (8h and 8i). All the above compounds have been characterised by spectral data. A probable pathway for the formation of the 1,2-dihydroisoquinolines (7a–g) and the isoquinolines (8a–i) is suggested.
Resumo:
M r=670.02, monoclinic, C2/c, a= 31.003(4), b=11.037(2), c=21.183(3)A, fl= 143.7 (1) °, V= 4291.2/k 3, D,n = 2.06, D x = 2.07Mgm -3, Z=8, MoKa, 2=0.7107/k, /~=7.45 mm -1, F(000) = 2560, T= 293 K, R = 0.061 for 1697 observed reflections. The bromphenol blue molecule consists essentially of three planar groupings: the sulfonphthalein ring system and two dibromophenol rings attached to the tetrahedral C atom of the five-membered ring of the sulfonphthalein system. The dibromophenol rings are inclined with resPect to each other at 73 ° whereas they make angles of 85 and 68 ° with respect to the sulfonphthalein system. The molecules aggregate into helical columns with the non-polar regions of the molecules in the interior and the polar regions on the surface. The columns are held together by a network of hydrogen bonds.