982 resultados para 020401 Condensed Matter Characterisation Technique Development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical treatment of optical transmission through periodically nanosructured metal films capable of supporting surface-plasmon polaritons is presented. The optical properties of such metal films are governed by surface polariton behavior in a periodic surface structure forming a surface polaritonic crystal. Due to different configurations of the electromagnetic field of surface polariton modes, only states of even Brillouin zones are responsible for the optical transmission enhancement at normal incidence. The transmission enhancement is related to photon tunneling via resonant states of surface polariton Bloch modes in which the energy buildup takes place. Surface polariton states of at least one of the film interfaces contribute to the transmission resonance which occurs due to tunnel coupling between photons and surface polaritons on the opposite interfaces. Under double-resonance conditions, resonant tunneling between surface polariton states of both interfaces is achieved, which leads to further enhancement of the transmission efficiency. The double-resonance conditions occur not only in the case of a film in symmetric environment but can also be engineered for a film on a substrate. Light tunneling via surface polariton states can take place directly through a structured metal film and does not necessarily require holes in a film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of extensive first-principles calculations we studied the ferroelectric phase transition and the associated isotope effect in KH2PO4 (KDP). Our calculations revealed that the spontaneous polarization of the ferroelectric phase is due to electronic charge redistributions and ionic displacements which are a consequence of proton ordering, and not vice versa. The experimentally observed double-peaked proton distribution in the paraelectric phase cannot be explained by a dynamics of only protons. This requires, instead, collective displacements within clusters that include also the heavier ions. These tunneling clusters can explain the recent evidence of tunneling obtained from Compton scattering measurements. The sole effect of mass change upon deuteration is not sufficient to explain the huge isotope effect. Instead, we find that structural modifications deeply connected with the chemistry of the H bonds produce a feedback effect on tunneling that strongly enhances the phenomenon. The resulting influence of the geometric changes on the isotope effect agrees with experimental data from neutron scattering. Calculations under pressure allowed us to analyze the issue of universality in the disappearance of ferroelectricity upon compression. Compressing DKDP so that the distance between the two peaks in the deuteron distribution is the same as for protons in KDP, corresponds to a modification of the underlying double-well potential, which becomes 23 meV shallower. This energy difference is what is required to modify the O-O distance in such a way as to have the same distribution for protons and deuterons. At the high pressures required experimentally, the above feedback mechanism is crucial to explain the magnitude of the geometrical effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis on the conductance of multiwall carbon nanotubes (MWNT's) is presented. Recent experiment indicated that MWNT's are good quantum conductors. Our theory shows that tunneling current between states on different walls of a defect-free, infinitely long MWNT is vanishingly small in general, which leads to the quantization of the conductance of the MWNT's. With a reasonable simple model, we explicitly show that the conductance of a capped MWNT can be determined by the outermost wall for an infinitely long nanotube. We apply the theory to finite MWNT's and estimate the generic interwall conductance to be negligible compared to the intrawall ballistic conductance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single-particle states to the many-body current-carrying state is more important than energy minimization for defining single-particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First steps are taken to model the electrochemical deposition of metals in nanometer-sized cavities. In the present work, the electrochemical deposition of Cu atoms in nanometer-sized holes dug on Au(111) is investigated through Monte Carlo simulations using the embedded atom method to represent particle interactions. By sweeping the chemical potential of Cu, a cluster is allowed to grow within the hole rising four atomic layers above the surface. Its lateral extension remains confined to the area defined by the borders of the original defect. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient method for calculating the electronic structure of systems that need a very fine sampling of the Brillouin zone is presented. The method is based on the variational optimization of a single (i.e., common to all points in the Brillouin zone) basis set for the expansion of the electronic orbitals. Considerations from k.p-approximation theory help to understand the efficiency of the method. The accuracy and the convergence properties of the method as a function of the optimal basis set size are analyzed for a test calculation on a 16-atom Na supercell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an ab initio pseudopotential calculation, we compute Compton profiles of silicon along the (100), (110), and (111) directions, and then reconstruct the pseudo-wave-functions to regain the oscillatory behavior of the all-electron valence wave functions near the atomic cores. We study the effect that this reconstruction has on the Compton profiles and their anisotropies. We find a decrease in the magnitude of the profiles at small wave vectors and in their anisotropies. These changes bring the theoretical predictions closer to experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the influence of tube-tube interactions in ropes of (10,10) carbon nanotubes, and find that these effects induce a pseudogap in the density of state (DOS) of the rope of width 0.1 eV at the Fermi level. In an isolated (n,n) carbon nanotube there are two bands that cross in a linear fashion at the Fermi level, making the nanotube metallic with a DOS that is constant in a 1.5 eV wide window around the Fermi energy. The presence of the neighbouring tubes causes these two bands to repel, opening up a band gap that can be as large as 0.3 eV. The small dispersion in the plane perpendicular to the rope smears out this gap for a rope with a large cross-sectional area, and we see a pseudogap at the Fermi energy in the DOS where the DOS falls to one third of its value for the isolated tube. This phenomenon should affect many properties of the behavior of ropes of (n,n) nanotubes, which should display a more semimetallic character than expected in transport and doping experiments, with the existence of both hole and electron carriers leading to qualitatively different thermopower and Hall-effect behaviors from those expected for a normal metal. Band repulsion like this can be expected to occur for any tube perturbed by a sufficiently strong interaction, for example, from contact with a surface or with other tubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we consider two aspects of the deposition of metal clusters on an electrode surface. The formation of such clusters with the tip of a scanning tunneling microscope is simulated by atom dynamics. Subsequently the stability of these clusters is investigated by Monte Carlo simulations in a grand-canonical ensemble. In particular, the following systems were considered explicitly: Pd clusters on Au(111), Cu on Au(111), Ag on Au(111), Pb on Au(111) and Cu on Ag(111). The analysis of the results obtained for the different systems leads to the conclusion that optimal systems for nanostructuring are those where the metals participating have similar cohesive energies and negative heats of alloy formation. In this respect, the system Cu-Pd(111) is predicted as a good candidate for the formation of stable clusters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for investigating the dynamics of atomic magnetic moments in current-carrying magnetic point contacts under bias is presented. This combines the nonequilibrium Green's function (NEGF) method for evaluating the current and the charge density with a description of the dynamics of the magnetization in terms of quasistatic thermally activated transitions between stationary configurations. This method is then implemented in a tight-binding (TB) model with parameters chosen to simulate the main features of the electronic structures of magnetic transition metals. We investigate the domain wall (DW) migration in magnetic monoatomic chains sandwiched between magnetic leads, and for realistic parameters find that collinear arrangement of the magnetic moments of the chain is always favorable. Several stationary magnetic configurations are identified, corresponding to a different number of Bloch walls in the chain and to a different current. The relative stability of these configurations depends on the geometrical details of the junction and on the bias; however, we predict transitions between different configurations with activation barriers of the order of a few tens of meV. Since different magnetic configurations are associated with different resistances, this suggests an intrinsic random telegraph noise at microwave frequencies in the I-V curves of magnetic atomic point contacts at room temperature. Finally, we investigate whether or not current-induced torques are conservative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend a new formalism, which allows correlated electron-ion dynamics to be applied to the problem of open boundary conditions. We implement this at the first moment level (allowing heating of ions by electrons) and observe the expected cooling in the classical part of the ionic kinetic energy and current-induced heating in the quantum contribution. The formalism for open boundaries should be easily extended to higher moments of the correlated electron-ion fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse a picture of transport in which two large but finite charged electrodes discharge across a nanoscale junction. We identify a functional whose minimization, within the space of all bound many-body wavefunctions, defines an instantaneous steady state. We also discuss factors that favour the onset of steady-state conduction in such systems, make a connection with the notion of entropy, and suggest a novel source of steady-state noise. Finally, we prove that the true many-body total current in this closed system is given exactly by the one-electron total current, obtained from time-dependent density-functional theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested.